Spaces:
Running
on
Zero
Running
on
Zero
""" | |
ein notation: | |
b - batch | |
n - sequence | |
nt - text sequence | |
nw - raw wave length | |
d - dimension | |
""" | |
from __future__ import annotations | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from einops import repeat | |
from x_transformers.x_transformers import RotaryEmbedding | |
from capspeech.nar.model.modules import ( | |
TimestepEmbedding, | |
ConvNeXtV2Block, | |
ConvPositionEmbedding, | |
CrossDiTBlock, | |
DiTBlock, | |
AdaLayerNormZero_Final, | |
precompute_freqs_cis, get_pos_embed_indices, | |
) | |
class TextEmbedding(nn.Module): | |
def __init__(self, text_num_embeds, text_dim, conv_layers = 0, conv_mult = 2): | |
super().__init__() | |
self.text_embed = nn.Embedding(text_num_embeds + 1, text_dim) # use 0 as filler token | |
if conv_layers > 0: | |
self.extra_modeling = True | |
self.precompute_max_pos = 4096 # ~44s of 24khz audio | |
self.register_buffer("freqs_cis", precompute_freqs_cis(text_dim, self.precompute_max_pos), persistent=False) | |
self.text_blocks = nn.Sequential(*[ConvNeXtV2Block(text_dim, text_dim * conv_mult) for _ in range(conv_layers)]) | |
else: | |
self.extra_modeling = False | |
def forward(self, text: int['b nt'], seq_len, drop_text=False): | |
batch, text_len = text.shape[0], text.shape[1] | |
text = text + 1 # use 0 as filler token. preprocess of batch pad -1, see list_str_to_idx() | |
text = text[:, :seq_len] # curtail if character tokens are more than the mel spec tokens | |
text = F.pad(text, (0, seq_len - text_len), value = 0) | |
if drop_text: # cfg for text | |
text = torch.zeros_like(text) | |
text = self.text_embed(text) # b n -> b n d | |
# possible extra modeling | |
if self.extra_modeling: | |
# sinus pos emb | |
batch_start = torch.zeros((batch,), dtype=torch.long) | |
pos_idx = get_pos_embed_indices(batch_start, seq_len, max_pos=self.precompute_max_pos) | |
text_pos_embed = self.freqs_cis[pos_idx] | |
text = text + text_pos_embed | |
# convnextv2 blocks | |
text = self.text_blocks(text) | |
return text | |
# noised input audio and context mixing embedding | |
class InputEmbedding(nn.Module): | |
def __init__(self, mel_dim, text_dim, out_dim): | |
super().__init__() | |
self.proj = nn.Linear(mel_dim * 2 + text_dim, out_dim) | |
self.conv_pos_embed = ConvPositionEmbedding(dim = out_dim) | |
def forward(self, x: float['b n d'], cond: float['b n d'], | |
text_embed: float['b n d'], drop_audio_cond = False): | |
if drop_audio_cond or cond is None: # cfg for cond audio | |
cond = torch.zeros_like(x) | |
x = self.proj(torch.cat((x, cond, text_embed), dim=-1)) | |
x = self.conv_pos_embed(x) + x | |
return x | |
# Transformer backbone using DiT blocks | |
class CrossDiT(nn.Module): | |
def __init__(self, | |
dim, depth=8, heads=8, dim_head=64, dropout=0.0, ff_mult=4, | |
mel_dim=100, t5_dim=512, clap_dim=512, | |
text_num_embeds=256, text_dim=None, conv_layers=0, | |
skip=False, use_checkpoint=True, qk_norm=True, | |
): | |
super().__init__() | |
self.time_embed = TimestepEmbedding(dim) | |
if text_dim is None: | |
text_dim = mel_dim | |
self.text_embed = TextEmbedding(text_num_embeds, text_dim, conv_layers=conv_layers) | |
self.input_embed = InputEmbedding(mel_dim, text_dim, dim) | |
self.caption_embedding = nn.Sequential( | |
nn.Linear(t5_dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, dim) | |
) | |
self.clap_embedding = nn.Sequential( | |
nn.Linear(clap_dim, dim), | |
nn.SiLU(), | |
nn.Linear(dim, text_dim) | |
) | |
# self.null_clap = nn.Parameters | |
# self.null_prompt = nn.Parameters | |
self.rotary_embed = RotaryEmbedding(dim_head) | |
self.dim = dim | |
self.depth = depth | |
self.skip = skip | |
self.in_blocks = nn.ModuleList([ | |
CrossDiTBlock(dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
ff_mult=ff_mult, | |
dropout=dropout, | |
use_checkpoint=use_checkpoint, | |
qk_norm=qk_norm, | |
skip=False | |
) | |
for _ in range(depth//2) | |
]) | |
self.mid_block = CrossDiTBlock(dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
ff_mult=ff_mult, | |
dropout=dropout, | |
use_checkpoint=use_checkpoint, | |
qk_norm=qk_norm, | |
skip=False) | |
self.out_blocks = nn.ModuleList([ | |
CrossDiTBlock(dim=dim, | |
heads=heads, | |
dim_head=dim_head, | |
ff_mult=ff_mult, | |
dropout=dropout, | |
use_checkpoint=use_checkpoint, | |
qk_norm=qk_norm, | |
skip=skip | |
) | |
for _ in range(depth//2) | |
]) | |
self.norm_out = AdaLayerNormZero_Final(dim) # final modulation | |
self.proj_out = nn.Linear(dim, mel_dim) | |
def forward( | |
self, | |
x: float['b n d'], # nosied input audio | |
cond: float['b n d'], # masked cond audio | |
prompt: float['b n d'], # speech caption | |
clap: float['b n d'], # sound effects | |
text: int['b nt'], # text | |
time: float['b'] | float[''], # time step | |
mask: bool['b n'] | None = None, | |
prompt_mask: bool['b n'] | None = None, | |
): | |
batch, seq_len = x.shape[0], x.shape[1] | |
if time.ndim == 0: | |
time = repeat(time, ' -> b', b=batch) | |
t = self.time_embed(time) | |
text_embed = self.text_embed(text, seq_len-1) | |
prompt_embed = self.caption_embedding(prompt) | |
clap_embed = self.clap_embedding(clap).unsqueeze(1) | |
text_embed = torch.cat([clap_embed, text_embed], dim=1) | |
x = self.input_embed(x, cond, text_embed) | |
rope = self.rotary_embed.forward_from_seq_len(seq_len) | |
skips = [] | |
for i, block in enumerate(self.in_blocks): | |
x = block(x, t, mask=mask, rope=rope, | |
context=prompt_embed, context_mask=prompt_mask) | |
if self.skip: | |
skips.append(x) | |
x = self.mid_block(x, t, mask=mask, rope=rope, | |
context=prompt_embed, context_mask=prompt_mask) | |
for i, block in enumerate(self.out_blocks): | |
if self.skip: | |
skip = skips.pop() | |
else: | |
skip = None | |
x = block(x, t, mask=mask, rope=rope, | |
context=prompt_embed, context_mask=prompt_mask, skip=skip) | |
x = self.norm_out(x, t) | |
output = self.proj_out(x) | |
return output | |