File size: 3,173 Bytes
9d3cb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np


class EnergyExtractor(nn.Module):
    def __init__(self, hop_size: int = 512, window_size: int = 1024,
                 padding: str = 'reflect', min_db: float = -60,
                 norm: bool = True, quantize_levels: int = None):
        super().__init__()
        self.hop_size = hop_size
        self.window_size = window_size
        self.padding = padding
        self.min_db = min_db
        self.norm = norm
        self.quantize_levels = quantize_levels

    def forward(self, audio: torch.Tensor) -> torch.Tensor:
        # Compute number of frames
        n_frames = int(audio.size(-1) // self.hop_size)

        # Pad the audio signal
        pad_amount = (self.window_size - self.hop_size) // 2
        audio_padded = F.pad(audio, (pad_amount, pad_amount), mode=self.padding)

        # Square the padded audio signal
        audio_squared = audio_padded ** 2

        # Compute the mean energy for each frame using unfold and mean
        audio_squared = audio_squared[:, None, None, :]
        energy = F.unfold(audio_squared, (1, self.window_size), stride=self.hop_size)[:, :, :n_frames]
        energy = energy.mean(dim=1)

        # Compute the square root of the mean energy to get the RMS energy
        # energy = torch.sqrt(energy)

        # Normalize the energy using the min_db value
        gain = torch.maximum(energy, torch.tensor(np.power(10, self.min_db / 10), device=audio.device))
        gain_db = 10 * torch.log10(gain)

        if self.norm:
            # Find the min and max of gain_db
            # min_gain_db = torch.min(gain_db)
            min_gain_db = self.min_db
            max_gain_db = torch.max(gain_db, dim=-1, keepdim=True)[0]

            # Avoid numerical error by adding a small epsilon to the denominator
            epsilon = 1e-8
            gain_db = (gain_db - min_gain_db) / (max_gain_db - min_gain_db + epsilon)

        if self.quantize_levels is not None:
            # Quantize the result to the given number of levels
            gain_db = torch.round(gain_db * (self.quantize_levels - 1)) / (self.quantize_levels - 1)

        return gain_db.unsqueeze(-1)


if __name__ == "__main__":
    energy_extractor = EnergyExtractor(hop_size=512, window_size=1024, padding='reflect', 
                                       min_db=-60, norm=True)
    audio = torch.rand(1, 16000)
    energy = energy_extractor(audio)
    print(energy.shape)
    import librosa
    import matplotlib.pyplot as plt
    # a1, _ = librosa.load('eg1.wav', sr=16000)
    # a2, _ = librosa.load('eg2.wav', sr=16000)
    # audio = torch.tensor([a1[:5*16000], a2[:5*16000]])
    a1, _ = librosa.load('eg2.wav', sr=24000)
    audio = torch.tensor(a1[:5*16000]).unsqueeze(0)
    energy = energy_extractor(audio)
    print(energy.shape)

    # Plot the energy for each audio sample
    plt.figure(figsize=(12, 6))

    for i in range(energy.shape[0]):
        plt.plot(energy[i, :, 0].cpu().numpy(), label=f'Audio {i+1}')

    plt.xlabel('Frame')
    plt.ylabel('Energy (dB)')
    plt.title('Energy over Time')
    plt.legend()
    plt.savefig('debug.png')