File size: 12,707 Bytes
b9d6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.cuda.amp import autocast
import math
import einops
from einops import rearrange, repeat
from inspect import isfunction
from .timm import trunc_normal_


# disable in checkpoint mode
# @torch.jit.script
def film_modulate(x, shift, scale):
    return x * (1 + scale) + shift


def timestep_embedding(timesteps, dim, max_period=10000):
    """

    Create sinusoidal timestep embeddings.



    :param timesteps: a 1-D Tensor of N indices, one per batch element.

                      These may be fractional.

    :param dim: the dimension of the output.

    :param max_period: controls the minimum frequency of the embeddings.

    :return: an [N x dim] Tensor of positional embeddings.

    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


class TimestepEmbedder(nn.Module):
    """

    Embeds scalar timesteps into vector representations.

    """

    def __init__(self, hidden_size, frequency_embedding_size=256, 

                 out_size=None):
        super().__init__()
        if out_size is None:
            out_size = hidden_size
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, out_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    def forward(self, t):
        t_freq = timestep_embedding(t, self.frequency_embedding_size).type(
            self.mlp[0].weight.dtype)
        t_emb = self.mlp(t_freq)
        return t_emb


def patchify(imgs, patch_size, input_type='2d'):
    if input_type == '2d':
        x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
    elif input_type == '1d':
        x = einops.rearrange(imgs, 'B C (h p1) -> B h (p1 C)', p1=patch_size)
    return x


def unpatchify(x, channels=3, input_type='2d', img_size=None):
    if input_type == '2d':
        patch_size = int((x.shape[2] // channels) ** 0.5)
        # h = w = int(x.shape[1] ** .5)
        h, w = img_size[0] // patch_size, img_size[1] // patch_size
        assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2]
        x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h,
                             p1=patch_size, p2=patch_size)
    elif input_type == '1d':
        patch_size = int((x.shape[2] // channels))
        h = x.shape[1]
        assert patch_size * channels == x.shape[2]
        x = einops.rearrange(x, 'B h (p1 C) -> B C (h p1)', h=h, p1=patch_size)
    return x


class PatchEmbed(nn.Module):
    """

     Image to Patch Embedding

    """

    def __init__(self, patch_size, in_chans=3, embed_dim=768, input_type='2d'):
        super().__init__()
        self.patch_size = patch_size
        self.input_type = input_type
        if input_type == '2d':
            self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True)
        elif input_type == '1d':
            self.proj = nn.Conv1d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True)

    def forward(self, x):
        if self.input_type == '2d':
            B, C, H, W = x.shape
            assert H % self.patch_size == 0 and W % self.patch_size == 0
        elif self.input_type == '1d':
            B, C, H = x.shape
            assert H % self.patch_size == 0

        x = self.proj(x).flatten(2).transpose(1, 2)
        return x


class PositionalConvEmbedding(nn.Module):
    """

    Relative positional embedding used in HuBERT

    """

    def __init__(self, dim=768, kernel_size=128, groups=16):
        super().__init__()
        self.conv = nn.Conv1d(
            dim,
            dim,
            kernel_size=kernel_size,
            padding=kernel_size // 2,
            groups=groups,
            bias=True
        )
        self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)

    def forward(self, x):
        # B C T
        x = self.conv(x)
        x = F.gelu(x[:, :, :-1])
        return x


class SinusoidalPositionalEncoding(nn.Module):
    def __init__(self, dim, length):
        super(SinusoidalPositionalEncoding, self).__init__()
        self.length = length
        self.dim = dim
        self.register_buffer('pe', self._generate_positional_encoding(length, dim))

    def _generate_positional_encoding(self, length, dim):
        pe = torch.zeros(length, dim)
        position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        return pe

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return x


class PE_wrapper(nn.Module):
    def __init__(self, dim=768, method='abs', length=None, **kwargs):
        super().__init__()
        self.method = method
        if method == 'abs':
            # init absolute pe like UViT
            self.length = length
            self.abs_pe = nn.Parameter(torch.zeros(1, length, dim))
            trunc_normal_(self.abs_pe, std=.02)
        elif method == 'conv':
            self.conv_pe = PositionalConvEmbedding(dim=dim, **kwargs)
        elif method == 'sinu':
            self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length)
        elif method == 'none':
            # skip pe
            self.id = nn.Identity()
        else:
            raise NotImplementedError

    def forward(self, x):
        if self.method == 'abs':
            _, L, _ = x.shape
            assert L <= self.length
            x = x + self.abs_pe[:, :L, :]
        elif self.method == 'conv':
            x = x + self.conv_pe(x)
        elif self.method == 'sinu':
            x = self.sinu_pe(x)
        elif self.method == 'none':
            x = self.id(x)
        else:
            raise NotImplementedError
        return x


class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        """

        Initialize the RMSNorm normalization layer.



        Args:

            dim (int): The dimension of the input tensor.

            eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.



        Attributes:

            eps (float): A small value added to the denominator for numerical stability.

            weight (nn.Parameter): Learnable scaling parameter.



        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        """

        Apply the RMSNorm normalization to the input tensor.



        Args:

            x (torch.Tensor): The input tensor.



        Returns:

            torch.Tensor: The normalized tensor.



        """
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        """

        Forward pass through the RMSNorm layer.



        Args:

            x (torch.Tensor): The input tensor.



        Returns:

            torch.Tensor: The output tensor after applying RMSNorm.



        """
        output = self._norm(x.float()).type_as(x)
        return output * self.weight


class GELU(nn.Module):

    def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", 

                 bias: bool = True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out, bias=bias)
        self.approximate = approximate

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate, approximate=self.approximate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32),
                      approximate=self.approximate).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states = self.gelu(hidden_states)
        return hidden_states


class GEGLU(nn.Module):
    def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)

    def gelu(self, gate: torch.Tensor) -> torch.Tensor:
        if gate.device.type != "mps":
            return F.gelu(gate)
        # mps: gelu is not implemented for float16
        return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype)

    def forward(self, hidden_states):
        hidden_states = self.proj(hidden_states)
        hidden_states, gate = hidden_states.chunk(2, dim=-1)
        return hidden_states * self.gelu(gate)


class ApproximateGELU(nn.Module):
    def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out, bias=bias)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj(x)
        return x * torch.sigmoid(1.702 * x)


# disable in checkpoint mode
# @torch.jit.script
def snake_beta(x, alpha, beta):
    return x + beta * torch.sin(x * alpha).pow(2)


class Snake(nn.Module):
    def __init__(self, dim_in, dim_out, bias,

                 alpha_trainable=True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out, bias=bias)
        self.alpha = nn.Parameter(torch.ones(1, 1, dim_out))
        self.beta = nn.Parameter(torch.ones(1, 1, dim_out))
        self.alpha.requires_grad = alpha_trainable
        self.beta.requires_grad = alpha_trainable

    def forward(self, x):
        x = self.proj(x)
        x = snake_beta(x, self.alpha, self.beta)
        return x


class GESnake(nn.Module):
    def __init__(self, dim_in, dim_out, bias,

                 alpha_trainable=True):
        super().__init__()
        self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
        self.alpha = nn.Parameter(torch.ones(1, 1, dim_out))
        self.beta = nn.Parameter(torch.ones(1, 1, dim_out))
        self.alpha.requires_grad = alpha_trainable
        self.beta.requires_grad = alpha_trainable

    def forward(self, x):
        x = self.proj(x)
        x, gate = x.chunk(2, dim=-1)
        return x * snake_beta(gate, self.alpha, self.beta)


class FeedForward(nn.Module):
    def __init__(

        self,

        dim,

        dim_out=None,

        mult=4,

        dropout=0.0,

        activation_fn="geglu",

        final_dropout=False,

        inner_dim=None,

        bias=True,

    ):
        super().__init__()
        if inner_dim is None:
            inner_dim = int(dim * mult)
        dim_out = dim_out if dim_out is not None else dim

        if activation_fn == "gelu":
            act_fn = GELU(dim, inner_dim, bias=bias)
        elif activation_fn == "gelu-approximate":
            act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias)
        elif activation_fn == "geglu":
            act_fn = GEGLU(dim, inner_dim, bias=bias)
        elif activation_fn == "geglu-approximate":
            act_fn = ApproximateGELU(dim, inner_dim, bias=bias)
        elif activation_fn == "snake":
            act_fn = Snake(dim, inner_dim, bias=bias)
        elif activation_fn == "gesnake":
            act_fn = GESnake(dim, inner_dim, bias=bias)
        else:
            raise NotImplementedError

        self.net = nn.ModuleList([])
        # project in
        self.net.append(act_fn)
        # project dropout
        self.net.append(nn.Dropout(dropout))
        # project out
        self.net.append(nn.Linear(inner_dim, dim_out, bias=bias))
        # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
        if final_dropout:
            self.net.append(nn.Dropout(dropout))

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        for module in self.net:
            hidden_states = module(hidden_states)
        return hidden_states