File size: 7,268 Bytes
b9d6819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import random
import pandas as pd
import torch
import librosa
import numpy as np
import soundfile as sf
from tqdm import tqdm
from utils import scale_shift_re


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """

    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and

    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4

    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


@torch.no_grad()
def inference(autoencoder, unet, gt, gt_mask,

              tokenizer, text_encoder,

              params, noise_scheduler,

              text_raw, neg_text=None,

              audio_frames=500,

              guidance_scale=3, guidance_rescale=0.0,

              ddim_steps=50, eta=1, random_seed=2024,

              device='cuda',

              ):
    if neg_text is None:
        neg_text = [""]
    if tokenizer is not None:
        text_batch = tokenizer(text_raw,
                               max_length=params['text_encoder']['max_length'],
                               padding="max_length", truncation=True, return_tensors="pt")
        text, text_mask = text_batch.input_ids.to(device), text_batch.attention_mask.to(device).bool()
        text = text_encoder(input_ids=text, attention_mask=text_mask).last_hidden_state

        uncond_text_batch = tokenizer(neg_text,
                                      max_length=params['text_encoder']['max_length'],
                                      padding="max_length", truncation=True, return_tensors="pt")
        uncond_text, uncond_text_mask = uncond_text_batch.input_ids.to(device), uncond_text_batch.attention_mask.to(device).bool()
        uncond_text = text_encoder(input_ids=uncond_text,
                                   attention_mask=uncond_text_mask).last_hidden_state
    else:
        text, text_mask = None, None
        guidance_scale = None

    codec_dim = params['model']['out_chans']
    unet.eval()

    if random_seed is not None:
        generator = torch.Generator(device=device).manual_seed(random_seed)
    else:
        generator = torch.Generator(device=device)
        generator.seed()

    noise_scheduler.set_timesteps(ddim_steps)

    # init noise
    noise = torch.randn((1, codec_dim, audio_frames), generator=generator, device=device)
    latents = noise

    for t in noise_scheduler.timesteps:
        latents = noise_scheduler.scale_model_input(latents, t)

        if guidance_scale:

            latents_combined = torch.cat([latents, latents], dim=0)
            text_combined = torch.cat([text, uncond_text], dim=0)
            text_mask_combined = torch.cat([text_mask, uncond_text_mask], dim=0)
            
            if gt is not None:
                gt_combined = torch.cat([gt, gt], dim=0)
                gt_mask_combined = torch.cat([gt_mask, gt_mask], dim=0)
            else:
                gt_combined = None
                gt_mask_combined = None
            
            output_combined, _ = unet(latents_combined, t, text_combined, context_mask=text_mask_combined, 
                                      cls_token=None, gt=gt_combined, mae_mask_infer=gt_mask_combined)
            output_text, output_uncond = torch.chunk(output_combined, 2, dim=0)

            output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
            if guidance_rescale > 0.0:
                output_pred = rescale_noise_cfg(output_pred, output_text,
                                                guidance_rescale=guidance_rescale)
        else:
            output_pred, mae_mask = unet(latents, t, text, context_mask=text_mask,
                                         cls_token=None, gt=gt, mae_mask_infer=gt_mask)

        latents = noise_scheduler.step(model_output=output_pred, timestep=t, 
                                       sample=latents,
                                       eta=eta, generator=generator).prev_sample

    pred = scale_shift_re(latents, params['autoencoder']['scale'],
                          params['autoencoder']['shift'])
    if gt is not None:
        pred[~gt_mask] = gt[~gt_mask]
    pred_wav = autoencoder(embedding=pred)
    return pred_wav


@torch.no_grad()
def eval_udit(autoencoder, unet,

              tokenizer, text_encoder,

              params, noise_scheduler,

              val_df, subset,

              audio_frames, mae=False,

              guidance_scale=3, guidance_rescale=0.0,

              ddim_steps=50, eta=1, random_seed=2023,

              device='cuda',

              epoch=0, save_path='logs/eval/', val_num=5):
    val_df = pd.read_csv(val_df)
    val_df = val_df[val_df['split'] == subset]
    if mae:
        val_df = val_df[val_df['audio_length'] != 0]

    save_path = save_path + str(epoch) + '/'
    os.makedirs(save_path, exist_ok=True)

    for i in tqdm(range(len(val_df))):
        row = val_df.iloc[i]
        text = [row['caption']]
        if mae:
            audio_path = params['data']['val_dir'] + str(row['audio_path'])
            gt, sr = librosa.load(audio_path, sr=params['data']['sr'])
            gt = gt / (np.max(np.abs(gt)) + 1e-9)
            sf.write(save_path + text[0] + '_gt.wav', gt, samplerate=params['data']['sr'])
            num_samples = 10 * sr
            if len(gt) < num_samples:
                padding = num_samples - len(gt)
                gt = np.pad(gt, (0, padding), 'constant')
            else:
                gt = gt[:num_samples]
            gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
            gt = autoencoder(audio=gt)
            B, D, L = gt.shape
            mask_len = int(L * 0.2)
            gt_mask = torch.zeros(B, D, L).to(device)
            for _ in range(2):
                start = random.randint(0, L - mask_len)
                gt_mask[:, :, start:start + mask_len] = 1
            gt_mask = gt_mask.bool()
        else:
            gt = None
            gt_mask = None

        pred = inference(autoencoder, unet, gt, gt_mask,
                         tokenizer, text_encoder, 
                         params, noise_scheduler,
                         text, neg_text=None,
                         audio_frames=audio_frames,
                         guidance_scale=guidance_scale, guidance_rescale=guidance_rescale,
                         ddim_steps=ddim_steps, eta=eta, random_seed=random_seed,
                         device=device)

        pred = pred.cpu().numpy().squeeze(0).squeeze(0)

        sf.write(save_path + text[0] + '.wav', pred, samplerate=params['data']['sr'])

        if i + 1 >= val_num:
            break