Spaces:
Running
on
Zero
Running
on
Zero
File size: 19,714 Bytes
71de706 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
import csv
import glob
import math
import numbers
import os
import random
import typing
from contextlib import contextmanager
from dataclasses import dataclass
from pathlib import Path
from typing import Dict
from typing import List
import numpy as np
import torch
import torchaudio
from flatten_dict import flatten
from flatten_dict import unflatten
@dataclass
class Info:
"""Shim for torchaudio.info API changes."""
sample_rate: float
num_frames: int
@property
def duration(self) -> float:
return self.num_frames / self.sample_rate
def info(audio_path: str):
"""Shim for torchaudio.info to make 0.7.2 API match 0.8.0.
Parameters
----------
audio_path : str
Path to audio file.
"""
# try default backend first, then fallback to soundfile
try:
info = torchaudio.info(str(audio_path))
except: # pragma: no cover
info = torchaudio.backend.soundfile_backend.info(str(audio_path))
if isinstance(info, tuple): # pragma: no cover
signal_info = info[0]
info = Info(sample_rate=signal_info.rate, num_frames=signal_info.length)
else:
info = Info(sample_rate=info.sample_rate, num_frames=info.num_frames)
return info
def ensure_tensor(
x: typing.Union[np.ndarray, torch.Tensor, float, int],
ndim: int = None,
batch_size: int = None,
):
"""Ensures that the input ``x`` is a tensor of specified
dimensions and batch size.
Parameters
----------
x : typing.Union[np.ndarray, torch.Tensor, float, int]
Data that will become a tensor on its way out.
ndim : int, optional
How many dimensions should be in the output, by default None
batch_size : int, optional
The batch size of the output, by default None
Returns
-------
torch.Tensor
Modified version of ``x`` as a tensor.
"""
if not torch.is_tensor(x):
x = torch.as_tensor(x)
if ndim is not None:
assert x.ndim <= ndim
while x.ndim < ndim:
x = x.unsqueeze(-1)
if batch_size is not None:
if x.shape[0] != batch_size:
shape = list(x.shape)
shape[0] = batch_size
x = x.expand(*shape)
return x
def _get_value(other):
from . import AudioSignal
if isinstance(other, AudioSignal):
return other.audio_data
return other
def hz_to_bin(hz: torch.Tensor, n_fft: int, sample_rate: int):
"""Closest frequency bin given a frequency, number
of bins, and a sampling rate.
Parameters
----------
hz : torch.Tensor
Tensor of frequencies in Hz.
n_fft : int
Number of FFT bins.
sample_rate : int
Sample rate of audio.
Returns
-------
torch.Tensor
Closest bins to the data.
"""
shape = hz.shape
hz = hz.flatten()
freqs = torch.linspace(0, sample_rate / 2, 2 + n_fft // 2)
hz[hz > sample_rate / 2] = sample_rate / 2
closest = (hz[None, :] - freqs[:, None]).abs()
closest_bins = closest.min(dim=0).indices
return closest_bins.reshape(*shape)
def random_state(seed: typing.Union[int, np.random.RandomState]):
"""
Turn seed into a np.random.RandomState instance.
Parameters
----------
seed : typing.Union[int, np.random.RandomState] or None
If seed is None, return the RandomState singleton used by np.random.
If seed is an int, return a new RandomState instance seeded with seed.
If seed is already a RandomState instance, return it.
Otherwise raise ValueError.
Returns
-------
np.random.RandomState
Random state object.
Raises
------
ValueError
If seed is not valid, an error is thrown.
"""
if seed is None or seed is np.random:
return np.random.mtrand._rand
elif isinstance(seed, (numbers.Integral, np.integer, int)):
return np.random.RandomState(seed)
elif isinstance(seed, np.random.RandomState):
return seed
else:
raise ValueError(
"%r cannot be used to seed a numpy.random.RandomState" " instance" % seed
)
def seed(random_seed, set_cudnn=False):
"""
Seeds all random states with the same random seed
for reproducibility. Seeds ``numpy``, ``random`` and ``torch``
random generators.
For full reproducibility, two further options must be set
according to the torch documentation:
https://pytorch.org/docs/stable/notes/randomness.html
To do this, ``set_cudnn`` must be True. It defaults to
False, since setting it to True results in a performance
hit.
Args:
random_seed (int): integer corresponding to random seed to
use.
set_cudnn (bool): Whether or not to set cudnn into determinstic
mode and off of benchmark mode. Defaults to False.
"""
torch.manual_seed(random_seed)
np.random.seed(random_seed)
random.seed(random_seed)
if set_cudnn:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
@contextmanager
def _close_temp_files(tmpfiles: list):
"""Utility function for creating a context and closing all temporary files
once the context is exited. For correct functionality, all temporary file
handles created inside the context must be appended to the ```tmpfiles```
list.
This function is taken wholesale from Scaper.
Parameters
----------
tmpfiles : list
List of temporary file handles
"""
def _close():
for t in tmpfiles:
try:
t.close()
os.unlink(t.name)
except:
pass
try:
yield
except: # pragma: no cover
_close()
raise
_close()
AUDIO_EXTENSIONS = [".wav", ".flac", ".mp3", ".mp4"]
def find_audio(folder: str, ext: List[str] = AUDIO_EXTENSIONS):
"""Finds all audio files in a directory recursively.
Returns a list.
Parameters
----------
folder : str
Folder to look for audio files in, recursively.
ext : List[str], optional
Extensions to look for without the ., by default
``['.wav', '.flac', '.mp3', '.mp4']``.
"""
folder = Path(folder)
# Take care of case where user has passed in an audio file directly
# into one of the calling functions.
if str(folder).endswith(tuple(ext)):
# if, however, there's a glob in the path, we need to
# return the glob, not the file.
if "*" in str(folder):
return glob.glob(str(folder), recursive=("**" in str(folder)))
else:
return [folder]
files = []
for x in ext:
files += folder.glob(f"**/*{x}")
return files
def read_sources(
sources: List[str],
remove_empty: bool = True,
relative_path: str = "",
ext: List[str] = AUDIO_EXTENSIONS,
):
"""Reads audio sources that can either be folders
full of audio files, or CSV files that contain paths
to audio files. CSV files that adhere to the expected
format can be generated by
:py:func:`audiotools.data.preprocess.create_csv`.
Parameters
----------
sources : List[str]
List of audio sources to be converted into a
list of lists of audio files.
remove_empty : bool, optional
Whether or not to remove rows with an empty "path"
from each CSV file, by default True.
Returns
-------
list
List of lists of rows of CSV files.
"""
files = []
relative_path = Path(relative_path)
for source in sources:
source = str(source)
_files = []
if source.endswith(".csv"):
with open(source, "r") as f:
reader = csv.DictReader(f)
for x in reader:
if remove_empty and x["path"] == "":
continue
if x["path"] != "":
x["path"] = str(relative_path / x["path"])
_files.append(x)
else:
for x in find_audio(source, ext=ext):
x = str(relative_path / x)
_files.append({"path": x})
files.append(sorted(_files, key=lambda x: x["path"]))
return files
def choose_from_list_of_lists(
state: np.random.RandomState, list_of_lists: list, p: float = None
):
"""Choose a single item from a list of lists.
Parameters
----------
state : np.random.RandomState
Random state to use when choosing an item.
list_of_lists : list
A list of lists from which items will be drawn.
p : float, optional
Probabilities of each list, by default None
Returns
-------
typing.Any
An item from the list of lists.
"""
source_idx = state.choice(list(range(len(list_of_lists))), p=p)
item_idx = state.randint(len(list_of_lists[source_idx]))
return list_of_lists[source_idx][item_idx], source_idx, item_idx
@contextmanager
def chdir(newdir: typing.Union[Path, str]):
"""
Context manager for switching directories to run a
function. Useful for when you want to use relative
paths to different runs.
Parameters
----------
newdir : typing.Union[Path, str]
Directory to switch to.
"""
curdir = os.getcwd()
try:
os.chdir(newdir)
yield
finally:
os.chdir(curdir)
def prepare_batch(batch: typing.Union[dict, list, torch.Tensor], device: str = "cpu"):
"""Moves items in a batch (typically generated by a DataLoader as a list
or a dict) to the specified device. This works even if dictionaries
are nested.
Parameters
----------
batch : typing.Union[dict, list, torch.Tensor]
Batch, typically generated by a dataloader, that will be moved to
the device.
device : str, optional
Device to move batch to, by default "cpu"
Returns
-------
typing.Union[dict, list, torch.Tensor]
Batch with all values moved to the specified device.
"""
if isinstance(batch, dict):
batch = flatten(batch)
for key, val in batch.items():
try:
batch[key] = val.to(device)
except:
pass
batch = unflatten(batch)
elif torch.is_tensor(batch):
batch = batch.to(device)
elif isinstance(batch, list):
for i in range(len(batch)):
try:
batch[i] = batch[i].to(device)
except:
pass
return batch
def sample_from_dist(dist_tuple: tuple, state: np.random.RandomState = None):
"""Samples from a distribution defined by a tuple. The first
item in the tuple is the distribution type, and the rest of the
items are arguments to that distribution. The distribution function
is gotten from the ``np.random.RandomState`` object.
Parameters
----------
dist_tuple : tuple
Distribution tuple
state : np.random.RandomState, optional
Random state, or seed to use, by default None
Returns
-------
typing.Union[float, int, str]
Draw from the distribution.
Examples
--------
Sample from a uniform distribution:
>>> dist_tuple = ("uniform", 0, 1)
>>> sample_from_dist(dist_tuple)
Sample from a constant distribution:
>>> dist_tuple = ("const", 0)
>>> sample_from_dist(dist_tuple)
Sample from a normal distribution:
>>> dist_tuple = ("normal", 0, 0.5)
>>> sample_from_dist(dist_tuple)
"""
if dist_tuple[0] == "const":
return dist_tuple[1]
state = random_state(state)
dist_fn = getattr(state, dist_tuple[0])
return dist_fn(*dist_tuple[1:])
def collate(list_of_dicts: list, n_splits: int = None):
"""Collates a list of dictionaries (e.g. as returned by a
dataloader) into a dictionary with batched values. This routine
uses the default torch collate function for everything
except AudioSignal objects, which are handled by the
:py:func:`audiotools.core.audio_signal.AudioSignal.batch`
function.
This function takes n_splits to enable splitting a batch
into multiple sub-batches for the purposes of gradient accumulation,
etc.
Parameters
----------
list_of_dicts : list
List of dictionaries to be collated.
n_splits : int
Number of splits to make when creating the batches (split into
sub-batches). Useful for things like gradient accumulation.
Returns
-------
dict
Dictionary containing batched data.
"""
from . import AudioSignal
batches = []
list_len = len(list_of_dicts)
return_list = False if n_splits is None else True
n_splits = 1 if n_splits is None else n_splits
n_items = int(math.ceil(list_len / n_splits))
for i in range(0, list_len, n_items):
# Flatten the dictionaries to avoid recursion.
list_of_dicts_ = [flatten(d) for d in list_of_dicts[i : i + n_items]]
dict_of_lists = {
k: [dic[k] for dic in list_of_dicts_] for k in list_of_dicts_[0]
}
batch = {}
for k, v in dict_of_lists.items():
if isinstance(v, list):
if all(isinstance(s, AudioSignal) for s in v):
batch[k] = AudioSignal.batch(v, pad_signals=True)
else:
# Borrow the default collate fn from torch.
batch[k] = torch.utils.data._utils.collate.default_collate(v)
batches.append(unflatten(batch))
batches = batches[0] if not return_list else batches
return batches
BASE_SIZE = 864
DEFAULT_FIG_SIZE = (9, 3)
def format_figure(
fig_size: tuple = None,
title: str = None,
fig=None,
format_axes: bool = True,
format: bool = True,
font_color: str = "white",
):
"""Prettifies the spectrogram and waveform plots. A title
can be inset into the top right corner, and the axes can be
inset into the figure, allowing the data to take up the entire
image. Used in
- :py:func:`audiotools.core.display.DisplayMixin.specshow`
- :py:func:`audiotools.core.display.DisplayMixin.waveplot`
- :py:func:`audiotools.core.display.DisplayMixin.wavespec`
Parameters
----------
fig_size : tuple, optional
Size of figure, by default (9, 3)
title : str, optional
Title to inset in top right, by default None
fig : matplotlib.figure.Figure, optional
Figure object, if None ``plt.gcf()`` will be used, by default None
format_axes : bool, optional
Format the axes to be inside the figure, by default True
format : bool, optional
This formatting can be skipped entirely by passing ``format=False``
to any of the plotting functions that use this formater, by default True
font_color : str, optional
Color of font of axes, by default "white"
"""
import matplotlib
import matplotlib.pyplot as plt
if fig_size is None:
fig_size = DEFAULT_FIG_SIZE
if not format:
return
if fig is None:
fig = plt.gcf()
fig.set_size_inches(*fig_size)
axs = fig.axes
pixels = (fig.get_size_inches() * fig.dpi)[0]
font_scale = pixels / BASE_SIZE
if format_axes:
axs = fig.axes
for ax in axs:
ymin, _ = ax.get_ylim()
xmin, _ = ax.get_xlim()
ticks = ax.get_yticks()
for t in ticks[2:-1]:
t = axs[0].annotate(
f"{(t / 1000):2.1f}k",
xy=(xmin, t),
xycoords="data",
xytext=(5, -5),
textcoords="offset points",
ha="left",
va="top",
color=font_color,
fontsize=12 * font_scale,
alpha=0.75,
)
ticks = ax.get_xticks()[2:]
for t in ticks[:-1]:
t = axs[0].annotate(
f"{t:2.1f}s",
xy=(t, ymin),
xycoords="data",
xytext=(5, 5),
textcoords="offset points",
ha="center",
va="bottom",
color=font_color,
fontsize=12 * font_scale,
alpha=0.75,
)
ax.margins(0, 0)
ax.set_axis_off()
ax.xaxis.set_major_locator(plt.NullLocator())
ax.yaxis.set_major_locator(plt.NullLocator())
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
if title is not None:
t = axs[0].annotate(
title,
xy=(1, 1),
xycoords="axes fraction",
fontsize=20 * font_scale,
xytext=(-5, -5),
textcoords="offset points",
ha="right",
va="top",
color="white",
)
t.set_bbox(dict(facecolor="black", alpha=0.5, edgecolor="black"))
def generate_chord_dataset(
max_voices: int = 8,
sample_rate: int = 44100,
num_items: int = 5,
duration: float = 1.0,
min_note: str = "C2",
max_note: str = "C6",
output_dir: Path = "chords",
):
"""
Generates a toy multitrack dataset of chords, synthesized from sine waves.
Parameters
----------
max_voices : int, optional
Maximum number of voices in a chord, by default 8
sample_rate : int, optional
Sample rate of audio, by default 44100
num_items : int, optional
Number of items to generate, by default 5
duration : float, optional
Duration of each item, by default 1.0
min_note : str, optional
Minimum note in the dataset, by default "C2"
max_note : str, optional
Maximum note in the dataset, by default "C6"
output_dir : Path, optional
Directory to save the dataset, by default "chords"
"""
import librosa
from . import AudioSignal
from ..data.preprocess import create_csv
min_midi = librosa.note_to_midi(min_note)
max_midi = librosa.note_to_midi(max_note)
tracks = []
for idx in range(num_items):
track = {}
# figure out how many voices to put in this track
num_voices = random.randint(1, max_voices)
for voice_idx in range(num_voices):
# choose some random params
midinote = random.randint(min_midi, max_midi)
dur = random.uniform(0.85 * duration, duration)
sig = AudioSignal.wave(
frequency=librosa.midi_to_hz(midinote),
duration=dur,
sample_rate=sample_rate,
shape="sine",
)
track[f"voice_{voice_idx}"] = sig
tracks.append(track)
# save the tracks to disk
output_dir = Path(output_dir)
output_dir.mkdir(exist_ok=True)
for idx, track in enumerate(tracks):
track_dir = output_dir / f"track_{idx}"
track_dir.mkdir(exist_ok=True)
for voice_name, sig in track.items():
sig.write(track_dir / f"{voice_name}.wav")
all_voices = list(set([k for track in tracks for k in track.keys()]))
voice_lists = {voice: [] for voice in all_voices}
for track in tracks:
for voice_name in all_voices:
if voice_name in track:
voice_lists[voice_name].append(track[voice_name].path_to_file)
else:
voice_lists[voice_name].append("")
for voice_name, paths in voice_lists.items():
create_csv(paths, output_dir / f"{voice_name}.csv", loudness=True)
return output_dir
|