File size: 52,619 Bytes
71de706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
import copy
from contextlib import contextmanager
from inspect import signature
from typing import List

import numpy as np
import torch
from flatten_dict import flatten
from flatten_dict import unflatten
from numpy.random import RandomState

from .. import ml
from ..core import AudioSignal
from ..core import util
from .datasets import AudioLoader

tt = torch.tensor
"""Shorthand for converting things to torch.tensor."""


class BaseTransform:
    """This is the base class for all transforms that are implemented
    in this library. Transforms have two main operations: ``transform``
    and ``instantiate``.

    ``instantiate`` sets the parameters randomly
    from distribution tuples for each parameter. For example, for the
    ``BackgroundNoise`` transform, the signal-to-noise ratio (``snr``)
    is chosen randomly by instantiate. By default, it chosen uniformly
    between 10.0 and 30.0 (the tuple is set to ``("uniform", 10.0, 30.0)``).

    ``transform`` applies the transform using the instantiated parameters.
    A simple example is as follows:

    >>> seed = 0
    >>> signal = ...
    >>> transform = transforms.NoiseFloor(db = ("uniform", -50.0, -30.0))
    >>> kwargs = transform.instantiate()
    >>> output = transform(signal.clone(), **kwargs)

    By breaking apart the instantiation of parameters from the actual audio
    processing of the transform, we can make things more reproducible, while
    also applying the transform on batches of data efficiently on GPU,
    rather than on individual audio samples.

    ..  note::
        We call ``signal.clone()`` for the input to the ``transform`` function
        because signals are modified in-place! If you don't clone the signal,
        you will lose the original data.

    Parameters
    ----------
    keys : list, optional
        Keys that the transform looks for when
        calling ``self.transform``, by default []. In general this is
        set automatically, and you won't need to manipulate this argument.
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0

    Examples
    --------

    >>> seed = 0
    >>>
    >>> audio_path = "tests/audio/spk/f10_script4_produced.wav"
    >>> signal = AudioSignal(audio_path, offset=10, duration=2)
    >>> transform = tfm.Compose(
    >>>     [
    >>>         tfm.RoomImpulseResponse(sources=["tests/audio/irs.csv"]),
    >>>         tfm.BackgroundNoise(sources=["tests/audio/noises.csv"]),
    >>>     ],
    >>> )
    >>>
    >>> kwargs = transform.instantiate(seed, signal)
    >>> output = transform(signal, **kwargs)

    """

    def __init__(self, keys: list = [], name: str = None, prob: float = 1.0):
        # Get keys from the _transform signature.
        tfm_keys = list(signature(self._transform).parameters.keys())

        # Filter out signal and kwargs keys.
        ignore_keys = ["signal", "kwargs"]
        tfm_keys = [k for k in tfm_keys if k not in ignore_keys]

        # Combine keys specified by the child class, the keys found in
        # _transform signature, and the mask key.
        self.keys = keys + tfm_keys + ["mask"]

        self.prob = prob

        if name is None:
            name = self.__class__.__name__
        self.name = name

    def _prepare(self, batch: dict):
        sub_batch = batch[self.name]

        for k in self.keys:
            assert k in sub_batch.keys(), f"{k} not in batch"

        return sub_batch

    def _transform(self, signal):
        return signal

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        return {}

    @staticmethod
    def apply_mask(batch: dict, mask: torch.Tensor):
        """Applies a mask to the batch.

        Parameters
        ----------
        batch : dict
            Batch whose values will be masked in the ``transform`` pass.
        mask : torch.Tensor
            Mask to apply to batch.

        Returns
        -------
        dict
            A dictionary that contains values only where ``mask = True``.
        """
        masked_batch = {k: v[mask] for k, v in flatten(batch).items()}
        return unflatten(masked_batch)

    def transform(self, signal: AudioSignal, **kwargs):
        """Apply the transform to the audio signal,
        with given keyword arguments.

        Parameters
        ----------
        signal : AudioSignal
            Signal that will be modified by the transforms in-place.
        kwargs: dict
            Keyword arguments to the specific transforms ``self._transform``
            function.

        Returns
        -------
        AudioSignal
            Transformed AudioSignal.

        Examples
        --------

        >>> for seed in range(10):
        >>>     kwargs = transform.instantiate(seed, signal)
        >>>     output = transform(signal.clone(), **kwargs)

        """
        tfm_kwargs = self._prepare(kwargs)
        mask = tfm_kwargs["mask"]

        if torch.any(mask):
            tfm_kwargs = self.apply_mask(tfm_kwargs, mask)
            tfm_kwargs = {k: v for k, v in tfm_kwargs.items() if k != "mask"}
            signal[mask] = self._transform(signal[mask], **tfm_kwargs)

        return signal

    def __call__(self, *args, **kwargs):
        return self.transform(*args, **kwargs)

    def instantiate(
        self,
        state: RandomState = None,
        signal: AudioSignal = None,
    ):
        """Instantiates parameters for the transform.

        Parameters
        ----------
        state : RandomState, optional
            _description_, by default None
        signal : AudioSignal, optional
            _description_, by default None

        Returns
        -------
        dict
            Dictionary containing instantiated arguments for every keyword
            argument to ``self._transform``.

        Examples
        --------

        >>> for seed in range(10):
        >>>     kwargs = transform.instantiate(seed, signal)
        >>>     output = transform(signal.clone(), **kwargs)

        """
        state = util.random_state(state)

        # Not all instantiates need the signal. Check if signal
        # is needed before passing it in, so that the end-user
        # doesn't need to have variables they're not using flowing
        # into their function.
        needs_signal = "signal" in set(signature(self._instantiate).parameters.keys())
        kwargs = {}
        if needs_signal:
            kwargs = {"signal": signal}

        # Instantiate the parameters for the transform.
        params = self._instantiate(state, **kwargs)
        for k in list(params.keys()):
            v = params[k]
            if isinstance(v, (AudioSignal, torch.Tensor, dict)):
                params[k] = v
            else:
                params[k] = tt(v)
        mask = state.rand() <= self.prob
        params[f"mask"] = tt(mask)

        # Put the params into a nested dictionary that will be
        # used later when calling the transform. This is to avoid
        # collisions in the dictionary.
        params = {self.name: params}

        return params

    def batch_instantiate(
        self,
        states: list = None,
        signal: AudioSignal = None,
    ):
        """Instantiates arguments for every item in a batch,
        given a list of states. Each state in the list
        corresponds to one item in the batch.

        Parameters
        ----------
        states : list, optional
            List of states, by default None
        signal : AudioSignal, optional
            AudioSignal to pass to the ``self.instantiate`` section
            if it is needed for this transform, by default None

        Returns
        -------
        dict
            Collated dictionary of arguments.

        Examples
        --------

        >>> batch_size = 4
        >>> signal = AudioSignal(audio_path, offset=10, duration=2)
        >>> signal_batch = AudioSignal.batch([signal.clone() for _ in range(batch_size)])
        >>>
        >>> states = [seed + idx for idx in list(range(batch_size))]
        >>> kwargs = transform.batch_instantiate(states, signal_batch)
        >>> batch_output = transform(signal_batch, **kwargs)
        """
        kwargs = []
        for state in states:
            kwargs.append(self.instantiate(state, signal))
        kwargs = util.collate(kwargs)
        return kwargs


class Identity(BaseTransform):
    """This transform just returns the original signal."""

    pass


class SpectralTransform(BaseTransform):
    """Spectral transforms require STFT data to exist, since manipulations
    of the STFT require the spectrogram. This just calls ``stft`` before
    the transform is called, and calls ``istft`` after the transform is
    called so that the audio data is written to after the spectral
    manipulation.
    """

    def transform(self, signal, **kwargs):
        signal.stft()
        super().transform(signal, **kwargs)
        signal.istft()
        return signal


class Compose(BaseTransform):
    """Compose applies transforms in sequence, one after the other. The
    transforms are passed in as positional arguments or as a list like so:

    >>> transform = tfm.Compose(
    >>>     [
    >>>         tfm.RoomImpulseResponse(sources=["tests/audio/irs.csv"]),
    >>>         tfm.BackgroundNoise(sources=["tests/audio/noises.csv"]),
    >>>     ],
    >>> )

    This will convolve the signal with a room impulse response, and then
    add background noise to the signal. Instantiate instantiates
    all the parameters for every transform in the transform list so the
    interface for using the Compose transform is the same as everything
    else:

    >>> kwargs = transform.instantiate()
    >>> output = transform(signal.clone(), **kwargs)

    Under the hood, the transform maps each transform to a unique name
    under the hood of the form ``{position}.{name}``, where ``position``
    is the index of the transform in the list. ``Compose`` can nest
    within other ``Compose`` transforms, like so:

    >>> preprocess = transforms.Compose(
    >>>     tfm.GlobalVolumeNorm(),
    >>>     tfm.CrossTalk(),
    >>>     name="preprocess",
    >>> )
    >>> augment = transforms.Compose(
    >>>     tfm.RoomImpulseResponse(),
    >>>     tfm.BackgroundNoise(),
    >>>     name="augment",
    >>> )
    >>> postprocess = transforms.Compose(
    >>>     tfm.VolumeChange(),
    >>>     tfm.RescaleAudio(),
    >>>     tfm.ShiftPhase(),
    >>>     name="postprocess",
    >>> )
    >>> transform = transforms.Compose(preprocess, augment, postprocess),

    This defines 3 composed transforms, and then composes them in sequence
    with one another.

    Parameters
    ----------
    *transforms : list
        List of transforms to apply
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(self, *transforms: list, name: str = None, prob: float = 1.0):
        if isinstance(transforms[0], list):
            transforms = transforms[0]

        for i, tfm in enumerate(transforms):
            tfm.name = f"{i}.{tfm.name}"

        keys = [tfm.name for tfm in transforms]
        super().__init__(keys=keys, name=name, prob=prob)

        self.transforms = transforms
        self.transforms_to_apply = keys

    @contextmanager
    def filter(self, *names: list):
        """This can be used to skip transforms entirely when applying
        the sequence of transforms to a signal. For example, take
        the following transforms with the names ``preprocess, augment, postprocess``.

        >>> preprocess = transforms.Compose(
        >>>     tfm.GlobalVolumeNorm(),
        >>>     tfm.CrossTalk(),
        >>>     name="preprocess",
        >>> )
        >>> augment = transforms.Compose(
        >>>     tfm.RoomImpulseResponse(),
        >>>     tfm.BackgroundNoise(),
        >>>     name="augment",
        >>> )
        >>> postprocess = transforms.Compose(
        >>>     tfm.VolumeChange(),
        >>>     tfm.RescaleAudio(),
        >>>     tfm.ShiftPhase(),
        >>>     name="postprocess",
        >>> )
        >>> transform = transforms.Compose(preprocess, augment, postprocess)

        If we wanted to apply all 3 to a signal, we do:

        >>> kwargs = transform.instantiate()
        >>> output = transform(signal.clone(), **kwargs)

        But if we only wanted to apply the ``preprocess`` and ``postprocess``
        transforms to the signal, we do:

        >>> with transform_fn.filter("preprocess", "postprocess"):
        >>>     output = transform(signal.clone(), **kwargs)

        Parameters
        ----------
        *names : list
            List of transforms, identified by name, to apply to signal.
        """
        old_transforms = self.transforms_to_apply
        self.transforms_to_apply = names
        yield
        self.transforms_to_apply = old_transforms

    def _transform(self, signal, **kwargs):
        for transform in self.transforms:
            if any([x in transform.name for x in self.transforms_to_apply]):
                signal = transform(signal, **kwargs)
        return signal

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        parameters = {}
        for transform in self.transforms:
            parameters.update(transform.instantiate(state, signal=signal))
        return parameters

    def __getitem__(self, idx):
        return self.transforms[idx]

    def __len__(self):
        return len(self.transforms)

    def __iter__(self):
        for transform in self.transforms:
            yield transform


class Choose(Compose):
    """Choose logic is the same as :py:func:`audiotools.data.transforms.Compose`,
    but instead of applying all the transforms in sequence, it applies just a single transform,
    which is chosen for each item in the batch.

    Parameters
    ----------
    *transforms : list
        List of transforms to apply
    weights : list
        Probability of choosing any specific transform.
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0

    Examples
    --------

    >>> transforms.Choose(tfm.LowPass(), tfm.HighPass())
    """

    def __init__(
        self,
        *transforms: list,
        weights: list = None,
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(*transforms, name=name, prob=prob)

        if weights is None:
            _len = len(self.transforms)
            weights = [1 / _len for _ in range(_len)]
        self.weights = np.array(weights)

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        kwargs = super()._instantiate(state, signal)
        tfm_idx = list(range(len(self.transforms)))
        tfm_idx = state.choice(tfm_idx, p=self.weights)
        one_hot = []
        for i, t in enumerate(self.transforms):
            mask = kwargs[t.name]["mask"]
            if mask.item():
                kwargs[t.name]["mask"] = tt(i == tfm_idx)
            one_hot.append(kwargs[t.name]["mask"])
        kwargs["one_hot"] = one_hot
        return kwargs


class Repeat(Compose):
    """Repeatedly applies a given transform ``n_repeat`` times."

    Parameters
    ----------
    transform : BaseTransform
        Transform to repeat.
    n_repeat : int, optional
        Number of times to repeat transform, by default 1
    """

    def __init__(
        self,
        transform,
        n_repeat: int = 1,
        name: str = None,
        prob: float = 1.0,
    ):
        transforms = [copy.copy(transform) for _ in range(n_repeat)]
        super().__init__(transforms, name=name, prob=prob)

        self.n_repeat = n_repeat


class RepeatUpTo(Choose):
    """Repeatedly applies a given transform up to ``max_repeat`` times."

    Parameters
    ----------
    transform : BaseTransform
        Transform to repeat.
    max_repeat : int, optional
        Max number of times to repeat transform, by default 1
    weights : list
        Probability of choosing any specific number up to ``max_repeat``.
    """

    def __init__(
        self,
        transform,
        max_repeat: int = 5,
        weights: list = None,
        name: str = None,
        prob: float = 1.0,
    ):
        transforms = []
        for n in range(1, max_repeat):
            transforms.append(Repeat(transform, n_repeat=n))
        super().__init__(transforms, name=name, prob=prob, weights=weights)

        self.max_repeat = max_repeat


class ClippingDistortion(BaseTransform):
    """Adds clipping distortion to signal. Corresponds
    to :py:func:`audiotools.core.effects.EffectMixin.clip_distortion`.

    Parameters
    ----------
    perc : tuple, optional
        Clipping percentile. Values are between 0.0 to 1.0.
        Typical values are 0.1 or below, by default ("uniform", 0.0, 0.1)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        perc: tuple = ("uniform", 0.0, 0.1),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.perc = perc

    def _instantiate(self, state: RandomState):
        return {"perc": util.sample_from_dist(self.perc, state)}

    def _transform(self, signal, perc):
        return signal.clip_distortion(perc)


class Equalizer(BaseTransform):
    """Applies an equalization curve to the audio signal. Corresponds
    to :py:func:`audiotools.core.effects.EffectMixin.equalizer`.

    Parameters
    ----------
    eq_amount : tuple, optional
        The maximum dB cut to apply to the audio in any band,
        by default ("const", 1.0 dB)
    n_bands : int, optional
        Number of bands in EQ, by default 6
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        eq_amount: tuple = ("const", 1.0),
        n_bands: int = 6,
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.eq_amount = eq_amount
        self.n_bands = n_bands

    def _instantiate(self, state: RandomState):
        eq_amount = util.sample_from_dist(self.eq_amount, state)
        eq = -eq_amount * state.rand(self.n_bands)
        return {"eq": eq}

    def _transform(self, signal, eq):
        return signal.equalizer(eq)


class Quantization(BaseTransform):
    """Applies quantization to the input waveform. Corresponds
    to :py:func:`audiotools.core.effects.EffectMixin.quantization`.

    Parameters
    ----------
    channels : tuple, optional
        Number of evenly spaced quantization channels to quantize
        to, by default ("choice", [8, 32, 128, 256, 1024])
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        channels: tuple = ("choice", [8, 32, 128, 256, 1024]),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.channels = channels

    def _instantiate(self, state: RandomState):
        return {"channels": util.sample_from_dist(self.channels, state)}

    def _transform(self, signal, channels):
        return signal.quantization(channels)


class MuLawQuantization(BaseTransform):
    """Applies mu-law quantization to the input waveform. Corresponds
    to :py:func:`audiotools.core.effects.EffectMixin.mulaw_quantization`.

    Parameters
    ----------
    channels : tuple, optional
        Number of mu-law spaced quantization channels to quantize
        to, by default ("choice", [8, 32, 128, 256, 1024])
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        channels: tuple = ("choice", [8, 32, 128, 256, 1024]),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.channels = channels

    def _instantiate(self, state: RandomState):
        return {"channels": util.sample_from_dist(self.channels, state)}

    def _transform(self, signal, channels):
        return signal.mulaw_quantization(channels)


class NoiseFloor(BaseTransform):
    """Adds a noise floor of Gaussian noise to the signal at a specified
    dB.

    Parameters
    ----------
    db : tuple, optional
        Level of noise to add to signal, by default ("const", -50.0)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        db: tuple = ("const", -50.0),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.db = db

    def _instantiate(self, state: RandomState, signal: AudioSignal):
        db = util.sample_from_dist(self.db, state)
        audio_data = state.randn(signal.num_channels, signal.signal_length)
        nz_signal = AudioSignal(audio_data, signal.sample_rate)
        nz_signal.normalize(db)
        return {"nz_signal": nz_signal}

    def _transform(self, signal, nz_signal):
        # Clone bg_signal so that transform can be repeatedly applied
        # to different signals with the same effect.
        return signal + nz_signal


class BackgroundNoise(BaseTransform):
    """Adds background noise from audio specified by a set of CSV files.
    A valid CSV file looks like, and is typically generated by
    :py:func:`audiotools.data.preprocess.create_csv`:

    ..  csv-table::
        :header: path

        room_tone/m6_script2_clean.wav
        room_tone/m6_script2_cleanraw.wav
        room_tone/m6_script2_ipad_balcony1.wav
        room_tone/m6_script2_ipad_bedroom1.wav
        room_tone/m6_script2_ipad_confroom1.wav
        room_tone/m6_script2_ipad_confroom2.wav
        room_tone/m6_script2_ipad_livingroom1.wav
        room_tone/m6_script2_ipad_office1.wav

    ..  note::
        All paths are relative to an environment variable called ``PATH_TO_DATA``,
        so that CSV files are portable across machines where data may be
        located in different places.

    This transform calls :py:func:`audiotools.core.effects.EffectMixin.mix`
    and :py:func:`audiotools.core.effects.EffectMixin.equalizer` under the
    hood.

    Parameters
    ----------
    snr : tuple, optional
        Signal-to-noise ratio, by default ("uniform", 10.0, 30.0)
    sources : List[str], optional
        Sources containing folders, or CSVs with paths to audio files,
        by default None
    weights : List[float], optional
        Weights to sample audio files from each source, by default None
    eq_amount : tuple, optional
        Amount of equalization to apply, by default ("const", 1.0)
    n_bands : int, optional
        Number of bands in equalizer, by default 3
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    loudness_cutoff : float, optional
        Loudness cutoff when loading from audio files, by default None
    """

    def __init__(
        self,
        snr: tuple = ("uniform", 10.0, 30.0),
        sources: List[str] = None,
        weights: List[float] = None,
        eq_amount: tuple = ("const", 1.0),
        n_bands: int = 3,
        name: str = None,
        prob: float = 1.0,
        loudness_cutoff: float = None,
    ):
        super().__init__(name=name, prob=prob)

        self.snr = snr
        self.eq_amount = eq_amount
        self.n_bands = n_bands
        self.loader = AudioLoader(sources, weights)
        self.loudness_cutoff = loudness_cutoff

    def _instantiate(self, state: RandomState, signal: AudioSignal):
        eq_amount = util.sample_from_dist(self.eq_amount, state)
        eq = -eq_amount * state.rand(self.n_bands)
        snr = util.sample_from_dist(self.snr, state)

        bg_signal = self.loader(
            state,
            signal.sample_rate,
            duration=signal.signal_duration,
            loudness_cutoff=self.loudness_cutoff,
            num_channels=signal.num_channels,
        )["signal"]

        return {"eq": eq, "bg_signal": bg_signal, "snr": snr}

    def _transform(self, signal, bg_signal, snr, eq):
        # Clone bg_signal so that transform can be repeatedly applied
        # to different signals with the same effect.
        return signal.mix(bg_signal.clone(), snr, eq)


class CrossTalk(BaseTransform):
    """Adds crosstalk between speakers, whose audio is drawn from a CSV file
    that was produced via :py:func:`audiotools.data.preprocess.create_csv`.

    This transform calls :py:func:`audiotools.core.effects.EffectMixin.mix`
    under the hood.

    Parameters
    ----------
    snr : tuple, optional
        How loud cross-talk speaker is relative to original signal in dB,
        by default ("uniform", 0.0, 10.0)
    sources : List[str], optional
        Sources containing folders, or CSVs with paths to audio files,
        by default None
    weights : List[float], optional
        Weights to sample audio files from each source, by default None
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    loudness_cutoff : float, optional
        Loudness cutoff when loading from audio files, by default -40
    """

    def __init__(
        self,
        snr: tuple = ("uniform", 0.0, 10.0),
        sources: List[str] = None,
        weights: List[float] = None,
        name: str = None,
        prob: float = 1.0,
        loudness_cutoff: float = -40,
    ):
        super().__init__(name=name, prob=prob)

        self.snr = snr
        self.loader = AudioLoader(sources, weights)
        self.loudness_cutoff = loudness_cutoff

    def _instantiate(self, state: RandomState, signal: AudioSignal):
        snr = util.sample_from_dist(self.snr, state)
        crosstalk_signal = self.loader(
            state,
            signal.sample_rate,
            duration=signal.signal_duration,
            loudness_cutoff=self.loudness_cutoff,
            num_channels=signal.num_channels,
        )["signal"]

        return {"crosstalk_signal": crosstalk_signal, "snr": snr}

    def _transform(self, signal, crosstalk_signal, snr):
        # Clone bg_signal so that transform can be repeatedly applied
        # to different signals with the same effect.
        loudness = signal.loudness()
        mix = signal.mix(crosstalk_signal.clone(), snr)
        mix.normalize(loudness)
        return mix


class RoomImpulseResponse(BaseTransform):
    """Convolves signal with a room impulse response, at a specified
    direct-to-reverberant ratio, with equalization applied. Room impulse
    response data is drawn from a CSV file that was produced via
    :py:func:`audiotools.data.preprocess.create_csv`.

    This transform calls :py:func:`audiotools.core.effects.EffectMixin.apply_ir`
    under the hood.

    Parameters
    ----------
    drr : tuple, optional
        _description_, by default ("uniform", 0.0, 30.0)
    sources : List[str], optional
        Sources containing folders, or CSVs with paths to audio files,
        by default None
    weights : List[float], optional
        Weights to sample audio files from each source, by default None
    eq_amount : tuple, optional
        Amount of equalization to apply, by default ("const", 1.0)
    n_bands : int, optional
        Number of bands in equalizer, by default 6
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    use_original_phase : bool, optional
        Whether or not to use the original phase, by default False
    offset : float, optional
        Offset from each impulse response file to use, by default 0.0
    duration : float, optional
        Duration of each impulse response, by default 1.0
    """

    def __init__(
        self,
        drr: tuple = ("uniform", 0.0, 30.0),
        sources: List[str] = None,
        weights: List[float] = None,
        eq_amount: tuple = ("const", 1.0),
        n_bands: int = 6,
        name: str = None,
        prob: float = 1.0,
        use_original_phase: bool = False,
        offset: float = 0.0,
        duration: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.drr = drr
        self.eq_amount = eq_amount
        self.n_bands = n_bands
        self.use_original_phase = use_original_phase

        self.loader = AudioLoader(sources, weights)
        self.offset = offset
        self.duration = duration

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        eq_amount = util.sample_from_dist(self.eq_amount, state)
        eq = -eq_amount * state.rand(self.n_bands)
        drr = util.sample_from_dist(self.drr, state)

        ir_signal = self.loader(
            state,
            signal.sample_rate,
            offset=self.offset,
            duration=self.duration,
            loudness_cutoff=None,
            num_channels=signal.num_channels,
        )["signal"]
        ir_signal.zero_pad_to(signal.sample_rate)

        return {"eq": eq, "ir_signal": ir_signal, "drr": drr}

    def _transform(self, signal, ir_signal, drr, eq):
        # Clone ir_signal so that transform can be repeatedly applied
        # to different signals with the same effect.
        return signal.apply_ir(
            ir_signal.clone(), drr, eq, use_original_phase=self.use_original_phase
        )


class VolumeChange(BaseTransform):
    """Changes the volume of the input signal.

    Uses :py:func:`audiotools.core.effects.EffectMixin.volume_change`.

    Parameters
    ----------
    db : tuple, optional
        Change in volume in decibels, by default ("uniform", -12.0, 0.0)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        db: tuple = ("uniform", -12.0, 0.0),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)
        self.db = db

    def _instantiate(self, state: RandomState):
        return {"db": util.sample_from_dist(self.db, state)}

    def _transform(self, signal, db):
        return signal.volume_change(db)


class VolumeNorm(BaseTransform):
    """Normalizes the volume of the excerpt to a specified decibel.

    Uses :py:func:`audiotools.core.effects.EffectMixin.normalize`.

    Parameters
    ----------
    db : tuple, optional
        dB to normalize signal to, by default ("const", -24)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        db: tuple = ("const", -24),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.db = db

    def _instantiate(self, state: RandomState):
        return {"db": util.sample_from_dist(self.db, state)}

    def _transform(self, signal, db):
        return signal.normalize(db)


class GlobalVolumeNorm(BaseTransform):
    """Similar to :py:func:`audiotools.data.transforms.VolumeNorm`, this
    transform also normalizes the volume of a signal, but it uses
    the volume of the entire audio file the loaded excerpt comes from,
    rather than the volume of just the excerpt. The volume of the
    entire audio file is expected in ``signal.metadata["loudness"]``.
    If loading audio from a CSV generated by :py:func:`audiotools.data.preprocess.create_csv`
    with ``loudness = True``, like the following:

    ..  csv-table::
        :header: path,loudness

        daps/produced/f1_script1_produced.wav,-16.299999237060547
        daps/produced/f1_script2_produced.wav,-16.600000381469727
        daps/produced/f1_script3_produced.wav,-17.299999237060547
        daps/produced/f1_script4_produced.wav,-16.100000381469727
        daps/produced/f1_script5_produced.wav,-16.700000762939453
        daps/produced/f3_script1_produced.wav,-16.5

    The ``AudioLoader`` will automatically load the loudness column into
    the metadata of the signal.

    Uses :py:func:`audiotools.core.effects.EffectMixin.volume_change`.

    Parameters
    ----------
    db : tuple, optional
        dB to normalize signal to, by default ("const", -24)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        db: tuple = ("const", -24),
        name: str = None,
        prob: float = 1.0,
    ):
        super().__init__(name=name, prob=prob)

        self.db = db

    def _instantiate(self, state: RandomState, signal: AudioSignal):
        if "loudness" not in signal.metadata:
            db_change = 0.0
        elif float(signal.metadata["loudness"]) == float("-inf"):
            db_change = 0.0
        else:
            db = util.sample_from_dist(self.db, state)
            db_change = db - float(signal.metadata["loudness"])

        return {"db": db_change}

    def _transform(self, signal, db):
        return signal.volume_change(db)


class Silence(BaseTransform):
    """Zeros out the signal with some probability.

    Parameters
    ----------
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 0.1
    """

    def __init__(self, name: str = None, prob: float = 0.1):
        super().__init__(name=name, prob=prob)

    def _transform(self, signal):
        _loudness = signal._loudness
        signal = AudioSignal(
            torch.zeros_like(signal.audio_data),
            sample_rate=signal.sample_rate,
            stft_params=signal.stft_params,
        )
        # So that the amound of noise added is as if it wasn't silenced.
        # TODO: improve this hack
        signal._loudness = _loudness

        return signal


class LowPass(BaseTransform):
    """Applies a LowPass filter.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.low_pass`.

    Parameters
    ----------
    cutoff : tuple, optional
        Cutoff frequency distribution,
        by default ``("choice", [4000, 8000, 16000])``
    zeros : int, optional
        Number of zero-crossings in filter, argument to
        ``julius.LowPassFilters``, by default 51
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        cutoff: tuple = ("choice", [4000, 8000, 16000]),
        zeros: int = 51,
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)

        self.cutoff = cutoff
        self.zeros = zeros

    def _instantiate(self, state: RandomState):
        return {"cutoff": util.sample_from_dist(self.cutoff, state)}

    def _transform(self, signal, cutoff):
        return signal.low_pass(cutoff, zeros=self.zeros)


class HighPass(BaseTransform):
    """Applies a HighPass filter.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.high_pass`.

    Parameters
    ----------
    cutoff : tuple, optional
        Cutoff frequency distribution,
        by default ``("choice", [50, 100, 250, 500, 1000])``
    zeros : int, optional
        Number of zero-crossings in filter, argument to
        ``julius.LowPassFilters``, by default 51
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        cutoff: tuple = ("choice", [50, 100, 250, 500, 1000]),
        zeros: int = 51,
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)

        self.cutoff = cutoff
        self.zeros = zeros

    def _instantiate(self, state: RandomState):
        return {"cutoff": util.sample_from_dist(self.cutoff, state)}

    def _transform(self, signal, cutoff):
        return signal.high_pass(cutoff, zeros=self.zeros)


class RescaleAudio(BaseTransform):
    """Rescales the audio so it is in between ``-val`` and ``val``
    only if the original audio exceeds those bounds. Useful if
    transforms have caused the audio to clip.

    Uses :py:func:`audiotools.core.effects.EffectMixin.ensure_max_of_audio`.

    Parameters
    ----------
    val : float, optional
        Max absolute value of signal, by default 1.0
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(self, val: float = 1.0, name: str = None, prob: float = 1):
        super().__init__(name=name, prob=prob)

        self.val = val

    def _transform(self, signal):
        return signal.ensure_max_of_audio(self.val)


class ShiftPhase(SpectralTransform):
    """Shifts the phase of the audio.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.shift)phase`.

    Parameters
    ----------
    shift : tuple, optional
        How much to shift phase by, by default ("uniform", -np.pi, np.pi)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        shift: tuple = ("uniform", -np.pi, np.pi),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)
        self.shift = shift

    def _instantiate(self, state: RandomState):
        return {"shift": util.sample_from_dist(self.shift, state)}

    def _transform(self, signal, shift):
        return signal.shift_phase(shift)


class InvertPhase(ShiftPhase):
    """Inverts the phase of the audio.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.shift_phase`.

    Parameters
    ----------
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(self, name: str = None, prob: float = 1):
        super().__init__(shift=("const", np.pi), name=name, prob=prob)


class CorruptPhase(SpectralTransform):
    """Corrupts the phase of the audio.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.corrupt_phase`.

    Parameters
    ----------
    scale : tuple, optional
        How much to corrupt phase by, by default ("uniform", 0, np.pi)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self, scale: tuple = ("uniform", 0, np.pi), name: str = None, prob: float = 1
    ):
        super().__init__(name=name, prob=prob)
        self.scale = scale

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        scale = util.sample_from_dist(self.scale, state)
        corruption = state.normal(scale=scale, size=signal.phase.shape[1:])
        return {"corruption": corruption.astype("float32")}

    def _transform(self, signal, corruption):
        return signal.shift_phase(shift=corruption)


class FrequencyMask(SpectralTransform):
    """Masks a band of frequencies at a center frequency
    from the audio.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.mask_frequencies`.

    Parameters
    ----------
    f_center : tuple, optional
        Center frequency between 0.0 and 1.0 (Nyquist), by default ("uniform", 0.0, 1.0)
    f_width : tuple, optional
        Width of zero'd out band, by default ("const", 0.1)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        f_center: tuple = ("uniform", 0.0, 1.0),
        f_width: tuple = ("const", 0.1),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)
        self.f_center = f_center
        self.f_width = f_width

    def _instantiate(self, state: RandomState, signal: AudioSignal):
        f_center = util.sample_from_dist(self.f_center, state)
        f_width = util.sample_from_dist(self.f_width, state)

        fmin = max(f_center - (f_width / 2), 0.0)
        fmax = min(f_center + (f_width / 2), 1.0)

        fmin_hz = (signal.sample_rate / 2) * fmin
        fmax_hz = (signal.sample_rate / 2) * fmax

        return {"fmin_hz": fmin_hz, "fmax_hz": fmax_hz}

    def _transform(self, signal, fmin_hz: float, fmax_hz: float):
        return signal.mask_frequencies(fmin_hz=fmin_hz, fmax_hz=fmax_hz)


class TimeMask(SpectralTransform):
    """Masks out contiguous time-steps from signal.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.mask_timesteps`.

    Parameters
    ----------
    t_center : tuple, optional
        Center time in terms of 0.0 and 1.0 (duration of signal),
        by default ("uniform", 0.0, 1.0)
    t_width : tuple, optional
        Width of dropped out portion, by default ("const", 0.025)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        t_center: tuple = ("uniform", 0.0, 1.0),
        t_width: tuple = ("const", 0.025),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)
        self.t_center = t_center
        self.t_width = t_width

    def _instantiate(self, state: RandomState, signal: AudioSignal):
        t_center = util.sample_from_dist(self.t_center, state)
        t_width = util.sample_from_dist(self.t_width, state)

        tmin = max(t_center - (t_width / 2), 0.0)
        tmax = min(t_center + (t_width / 2), 1.0)

        tmin_s = signal.signal_duration * tmin
        tmax_s = signal.signal_duration * tmax
        return {"tmin_s": tmin_s, "tmax_s": tmax_s}

    def _transform(self, signal, tmin_s: float, tmax_s: float):
        return signal.mask_timesteps(tmin_s=tmin_s, tmax_s=tmax_s)


class MaskLowMagnitudes(SpectralTransform):
    """Masks low magnitude regions out of signal.

    Uses :py:func:`audiotools.core.dsp.DSPMixin.mask_low_magnitudes`.

    Parameters
    ----------
    db_cutoff : tuple, optional
        Decibel value for which things below it will be masked away,
        by default ("uniform", -10, 10)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        db_cutoff: tuple = ("uniform", -10, 10),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)
        self.db_cutoff = db_cutoff

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        return {"db_cutoff": util.sample_from_dist(self.db_cutoff, state)}

    def _transform(self, signal, db_cutoff: float):
        return signal.mask_low_magnitudes(db_cutoff)


class Smoothing(BaseTransform):
    """Convolves the signal with a smoothing window.

    Uses :py:func:`audiotools.core.effects.EffectMixin.convolve`.

    Parameters
    ----------
    window_type : tuple, optional
        Type of window to use, by default ("const", "average")
    window_length : tuple, optional
        Length of smoothing window, by
        default ("choice", [8, 16, 32, 64, 128, 256, 512])
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        window_type: tuple = ("const", "average"),
        window_length: tuple = ("choice", [8, 16, 32, 64, 128, 256, 512]),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(name=name, prob=prob)
        self.window_type = window_type
        self.window_length = window_length

    def _instantiate(self, state: RandomState, signal: AudioSignal = None):
        window_type = util.sample_from_dist(self.window_type, state)
        window_length = util.sample_from_dist(self.window_length, state)
        window = signal.get_window(
            window_type=window_type, window_length=window_length, device="cpu"
        )
        return {"window": AudioSignal(window, signal.sample_rate)}

    def _transform(self, signal, window):
        sscale = signal.audio_data.abs().max(dim=-1, keepdim=True).values
        sscale[sscale == 0.0] = 1.0

        out = signal.convolve(window)

        oscale = out.audio_data.abs().max(dim=-1, keepdim=True).values
        oscale[oscale == 0.0] = 1.0

        out = out * (sscale / oscale)
        return out


class TimeNoise(TimeMask):
    """Similar to :py:func:`audiotools.data.transforms.TimeMask`, but
    replaces with noise instead of zeros.

    Parameters
    ----------
    t_center : tuple, optional
        Center time in terms of 0.0 and 1.0 (duration of signal),
        by default ("uniform", 0.0, 1.0)
    t_width : tuple, optional
        Width of dropped out portion, by default ("const", 0.025)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        t_center: tuple = ("uniform", 0.0, 1.0),
        t_width: tuple = ("const", 0.025),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(t_center=t_center, t_width=t_width, name=name, prob=prob)

    def _transform(self, signal, tmin_s: float, tmax_s: float):
        signal = signal.mask_timesteps(tmin_s=tmin_s, tmax_s=tmax_s, val=0.0)
        mag, phase = signal.magnitude, signal.phase

        mag_r, phase_r = torch.randn_like(mag), torch.randn_like(phase)
        mask = (mag == 0.0) * (phase == 0.0)

        mag[mask] = mag_r[mask]
        phase[mask] = phase_r[mask]

        signal.magnitude = mag
        signal.phase = phase
        return signal


class FrequencyNoise(FrequencyMask):
    """Similar to :py:func:`audiotools.data.transforms.FrequencyMask`, but
    replaces with noise instead of zeros.

    Parameters
    ----------
    f_center : tuple, optional
        Center frequency between 0.0 and 1.0 (Nyquist), by default ("uniform", 0.0, 1.0)
    f_width : tuple, optional
        Width of zero'd out band, by default ("const", 0.1)
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        f_center: tuple = ("uniform", 0.0, 1.0),
        f_width: tuple = ("const", 0.1),
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(f_center=f_center, f_width=f_width, name=name, prob=prob)

    def _transform(self, signal, fmin_hz: float, fmax_hz: float):
        signal = signal.mask_frequencies(fmin_hz=fmin_hz, fmax_hz=fmax_hz)
        mag, phase = signal.magnitude, signal.phase

        mag_r, phase_r = torch.randn_like(mag), torch.randn_like(phase)
        mask = (mag == 0.0) * (phase == 0.0)

        mag[mask] = mag_r[mask]
        phase[mask] = phase_r[mask]

        signal.magnitude = mag
        signal.phase = phase
        return signal


class SpectralDenoising(Equalizer):
    """Applies denoising algorithm detailed in
    :py:func:`audiotools.ml.layers.spectral_gate.SpectralGate`,
    using a randomly generated noise signal for denoising.

    Parameters
    ----------
    eq_amount : tuple, optional
        Amount of eq to apply to noise signal, by default ("const", 1.0)
    denoise_amount : tuple, optional
        Amount to denoise by, by default ("uniform", 0.8, 1.0)
    nz_volume : float, optional
        Volume of noise to denoise with, by default -40
    n_bands : int, optional
        Number of bands in equalizer, by default 6
    n_freq : int, optional
        Number of frequency bins to smooth by, by default 3
    n_time : int, optional
        Number of time bins to smooth by, by default 5
    name : str, optional
        Name of this transform, used to identify it in the dictionary
        produced by ``self.instantiate``, by default None
    prob : float, optional
        Probability of applying this transform, by default 1.0
    """

    def __init__(
        self,
        eq_amount: tuple = ("const", 1.0),
        denoise_amount: tuple = ("uniform", 0.8, 1.0),
        nz_volume: float = -40,
        n_bands: int = 6,
        n_freq: int = 3,
        n_time: int = 5,
        name: str = None,
        prob: float = 1,
    ):
        super().__init__(eq_amount=eq_amount, n_bands=n_bands, name=name, prob=prob)

        self.nz_volume = nz_volume
        self.denoise_amount = denoise_amount
        self.spectral_gate = ml.layers.SpectralGate(n_freq, n_time)

    def _transform(self, signal, nz, eq, denoise_amount):
        nz = nz.normalize(self.nz_volume).equalizer(eq)
        self.spectral_gate = self.spectral_gate.to(signal.device)
        signal = self.spectral_gate(signal, nz, denoise_amount)
        return signal

    def _instantiate(self, state: RandomState):
        kwargs = super()._instantiate(state)
        kwargs["denoise_amount"] = util.sample_from_dist(self.denoise_amount, state)
        kwargs["nz"] = AudioSignal(state.randn(22050), 44100)
        return kwargs