EzAudio / app.py
OpenSound's picture
QoL PR (#1)
285840d verified
raw
history blame
5.53 kB
import os
import torch
import random
import spaces
import numpy as np
import gradio as gr
import soundfile as sf
from accelerate import Accelerator
from transformers import T5Tokenizer, T5EncoderModel
from diffusers import DDIMScheduler
from src.models.conditioners import MaskDiT
from src.modules.autoencoder_wrapper import Autoencoder
from src.inference import inference
from src.utils import load_yaml_with_includes
# Load model and configs
def load_models(config_name, ckpt_path, vae_path, device):
params = load_yaml_with_includes(config_name)
# Load codec model
autoencoder = Autoencoder(ckpt_path=vae_path,
model_type=params['autoencoder']['name'],
quantization_first=params['autoencoder']['q_first']).to(device)
autoencoder.eval()
# Load text encoder
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
text_encoder.eval()
# Load main U-Net model
unet = MaskDiT(**params['model']).to(device)
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model'])
unet.eval()
accelerator = Accelerator(mixed_precision="fp16")
unet = accelerator.prepare(unet)
# Load noise scheduler
noise_scheduler = DDIMScheduler(**params['diff'])
latents = torch.randn((1, 128, 128), device=device)
noise = torch.randn_like(latents)
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
_ = noise_scheduler.add_noise(latents, noise, timesteps)
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params
MAX_SEED = np.iinfo(np.int32).max
# Model and config paths
config_name = 'ckpts/ezaudio-xl.yml'
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
vae_path = 'ckpts/vae/1m.pt'
save_path = 'output/'
os.makedirs(save_path, exist_ok=True)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
device)
@spaces.GPU
def generate_audio(text, length,
guidance_scale, guidance_rescale, ddim_steps, eta,
random_seed, randomize_seed):
neg_text = None
length = length * params['autoencoder']['latent_sr']
if randomize_seed:
random_seed = random.randint(0, MAX_SEED)
pred = inference(autoencoder, unet, None, None,
tokenizer, text_encoder,
params, noise_scheduler,
text, neg_text,
length,
guidance_scale, guidance_rescale,
ddim_steps, eta, random_seed,
device)
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
# output_file = f"{save_path}/{text}.wav"
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])
return params['autoencoder']['sr'], pred
# Examples (if needed for the demo)
examples = [
"the sound of rain falling softly",
"a dog barking in the distance",
"light guitar music is playing",
]
# CSS styling (optional)
css = """
#col-container {
margin: 0 auto;
max-width: 1280px;
}
"""
# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# EzAudio: High-quality Text-to-Audio Generator
Generate audio from text using a diffusion transformer. Adjust advanced settings for more control.
""")
# Basic Input: Text prompt
with gr.Row():
text_input = gr.Textbox(
label="Text Prompt",
show_label=True,
max_lines=2,
placeholder="Enter your prompt",
container=True,
value="a dog barking in the distance",
scale=4
)
# Run button
run_button = gr.Button("Generate", scale=1)
# Output Component
result = gr.Audio(label="Result", type="numpy")
# Advanced settings in an Accordion
with gr.Accordion("Advanced Settings", open=False):
# Audio Length
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale")
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
# Examples block
gr.Examples(
examples=examples,
inputs=[text_input]
)
# Define the trigger and input-output linking
run_button.click(
fn=generate_audio,
inputs=[text_input, length_input, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
text_input.submit(fn=generate_audio,
inputs=[text_input, length_input, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
outputs=[result]
)
# Launch the Gradio demo
demo.launch()