EzAudio / src /models /utils /.ipynb_checkpoints /attention-checkpoint.py
OpenSound's picture
Upload 84 files
b9d6819 verified
raw
history blame
11.3 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint
import einops
from einops import rearrange, repeat
from inspect import isfunction
from .rotary import RotaryEmbedding
from .modules import RMSNorm
if hasattr(nn.functional, 'scaled_dot_product_attention'):
ATTENTION_MODE = 'flash'
else:
ATTENTION_MODE = 'math'
print(f'attention mode is {ATTENTION_MODE}')
def add_mask(sim, mask):
b, ndim = sim.shape[0], mask.ndim
if ndim == 3:
mask = rearrange(mask, "b n m -> b 1 n m")
if ndim == 2:
mask = repeat(mask, "n m -> b 1 n m", b=b)
max_neg_value = -torch.finfo(sim.dtype).max
sim = sim.masked_fill(~mask, max_neg_value)
return sim
def create_mask(q_shape, k_shape, device, q_mask=None, k_mask=None):
def default(val, d):
return val if val is not None else (d() if isfunction(d) else d)
b, i, j, device = q_shape[0], q_shape[-2], k_shape[-2], device
q_mask = default(q_mask, torch.ones((b, i), device=device, dtype=torch.bool))
k_mask = default(k_mask, torch.ones((b, j), device=device, dtype=torch.bool))
attn_mask = rearrange(q_mask, 'b i -> b 1 i 1') * rearrange(k_mask, 'b j -> b 1 1 j')
return attn_mask
class Attention(nn.Module):
def __init__(self, dim, context_dim=None, num_heads=8,
qkv_bias=False, qk_scale=None, qk_norm=None,
attn_drop=0., proj_drop=0., rope_mode='none'):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
if context_dim is None:
self.cross_attn = False
else:
self.cross_attn = True
context_dim = dim if context_dim is None else context_dim
self.to_q = nn.Linear(dim, dim, bias=qkv_bias)
self.to_k = nn.Linear(context_dim, dim, bias=qkv_bias)
self.to_v = nn.Linear(context_dim, dim, bias=qkv_bias)
if qk_norm is None:
self.norm_q = nn.Identity()
self.norm_k = nn.Identity()
elif qk_norm == 'layernorm':
self.norm_q = nn.LayerNorm(head_dim)
self.norm_k = nn.LayerNorm(head_dim)
elif qk_norm == 'rmsnorm':
self.norm_q = RMSNorm(head_dim)
self.norm_k = RMSNorm(head_dim)
else:
raise NotImplementedError
self.attn_drop_p = attn_drop
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
if self.cross_attn:
assert rope_mode == 'none'
self.rope_mode = rope_mode
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
self.rotary = RotaryEmbedding(dim=head_dim)
elif self.rope_mode == 'dual':
self.rotary_x = RotaryEmbedding(dim=head_dim)
self.rotary_c = RotaryEmbedding(dim=head_dim)
def _rotary(self, q, k, extras):
if self.rope_mode == 'shared':
q, k = self.rotary(q=q, k=k)
elif self.rope_mode == 'x_only':
q_x, k_x = self.rotary(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
q = torch.cat((q_c, q_x), dim=2)
k = torch.cat((k_c, k_x), dim=2)
elif self.rope_mode == 'dual':
q_x, k_x = self.rotary_x(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
q_c, k_c = self.rotary_c(q=q[:, :, :extras, :], k=k[:, :, :extras, :])
q = torch.cat((q_c, q_x), dim=2)
k = torch.cat((k_c, k_x), dim=2)
elif self.rope_mode == 'none':
pass
else:
raise NotImplementedError
return q, k
def _attn(self, q, k, v, mask_binary):
if ATTENTION_MODE == 'flash':
x = F.scaled_dot_product_attention(q, k, v,
dropout_p=self.attn_drop_p,
attn_mask=mask_binary)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
elif ATTENTION_MODE == 'math':
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = add_mask(attn, mask_binary) if mask_binary is not None else attn
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
else:
raise NotImplementedError
return x
def forward(self, x, context=None, context_mask=None, extras=0):
B, L, C = x.shape
if context is None:
context = x
q = self.to_q(x)
k = self.to_k(context)
v = self.to_v(context)
if context_mask is not None:
mask_binary = create_mask(x.shape, context.shape,
x.device, None, context_mask)
else:
mask_binary = None
q = einops.rearrange(q, 'B L (H D) -> B H L D', H=self.num_heads)
k = einops.rearrange(k, 'B L (H D) -> B H L D', H=self.num_heads)
v = einops.rearrange(v, 'B L (H D) -> B H L D', H=self.num_heads)
q = self.norm_q(q)
k = self.norm_k(k)
q, k = self._rotary(q, k, extras)
x = self._attn(q, k, v, mask_binary)
x = self.proj(x)
x = self.proj_drop(x)
return x
class JointAttention(nn.Module):
def __init__(self, dim, num_heads=8,
qkv_bias=False, qk_scale=None, qk_norm=None,
attn_drop=0., proj_drop=0.,
rope_mode='none'):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.to_qx, self.to_kx, self.to_vx = self._make_qkv_layers(dim, qkv_bias)
self.to_qc, self.to_kc, self.to_vc = self._make_qkv_layers(dim, qkv_bias)
self.norm_qx, self.norm_kx = self._make_norm_layers(qk_norm, head_dim)
self.norm_qc, self.norm_kc = self._make_norm_layers(qk_norm, head_dim)
self.attn_drop_p = attn_drop
self.attn_drop = nn.Dropout(attn_drop)
self.proj_x = nn.Linear(dim, dim)
self.proj_drop_x = nn.Dropout(proj_drop)
self.proj_c = nn.Linear(dim, dim)
self.proj_drop_c = nn.Dropout(proj_drop)
self.rope_mode = rope_mode
if self.rope_mode == 'shared' or self.rope_mode == 'x_only':
self.rotary = RotaryEmbedding(dim=head_dim)
elif self.rope_mode == 'dual':
self.rotary_x = RotaryEmbedding(dim=head_dim)
self.rotary_c = RotaryEmbedding(dim=head_dim)
def _make_qkv_layers(self, dim, qkv_bias):
return (nn.Linear(dim, dim, bias=qkv_bias),
nn.Linear(dim, dim, bias=qkv_bias),
nn.Linear(dim, dim, bias=qkv_bias))
def _make_norm_layers(self, qk_norm, head_dim):
if qk_norm is None:
norm_q = nn.Identity()
norm_k = nn.Identity()
elif qk_norm == 'layernorm':
norm_q = nn.LayerNorm(head_dim)
norm_k = nn.LayerNorm(head_dim)
elif qk_norm == 'rmsnorm':
norm_q = RMSNorm(head_dim)
norm_k = RMSNorm(head_dim)
else:
raise NotImplementedError
return norm_q, norm_k
def _rotary(self, q, k, extras):
if self.rope_mode == 'shared':
q, k = self.rotary(q=q, k=k)
elif self.rope_mode == 'x_only':
q_x, k_x = self.rotary(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
q_c, k_c = q[:, :, :extras, :], k[:, :, :extras, :]
q = torch.cat((q_c, q_x), dim=2)
k = torch.cat((k_c, k_x), dim=2)
elif self.rope_mode == 'dual':
q_x, k_x = self.rotary_x(q=q[:, :, extras:, :], k=k[:, :, extras:, :])
q_c, k_c = self.rotary_c(q=q[:, :, :extras, :], k=k[:, :, :extras, :])
q = torch.cat((q_c, q_x), dim=2)
k = torch.cat((k_c, k_x), dim=2)
elif self.rope_mode == 'none':
pass
else:
raise NotImplementedError
return q, k
def _attn(self, q, k, v, mask_binary):
if ATTENTION_MODE == 'flash':
x = F.scaled_dot_product_attention(q, k, v,
dropout_p=self.attn_drop_p,
attn_mask=mask_binary)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
elif ATTENTION_MODE == 'math':
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = add_mask(attn, mask_binary) if mask_binary is not None else attn
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2)
x = einops.rearrange(x, 'B H L D -> B L (H D)')
else:
raise NotImplementedError
return x
def _cat_mask(self, x, context, x_mask=None, context_mask=None):
B = x.shape[0]
if x_mask is None:
x_mask = torch.ones(B, x.shape[-2], device=x.device).bool()
if context_mask is None:
context_mask = torch.ones(B, context.shape[-2], device=context.device).bool()
mask = torch.cat([context_mask, x_mask], dim=1)
return mask
def forward(self, x, context, x_mask=None, context_mask=None, extras=0):
B, Lx, C = x.shape
_, Lc, _ = context.shape
if x_mask is not None or context_mask is not None:
mask = self._cat_mask(x, context,
x_mask=x_mask,
context_mask=context_mask)
shape = [B, Lx+Lc, C]
mask_binary = create_mask(q_shape=shape, k_shape=shape,
device=x.device,
q_mask=None, k_mask=mask)
else:
mask_binary = None
qx, kx, vx = self.to_qx(x), self.to_kx(x), self.to_vx(x)
qc, kc, vc = self.to_qc(context), self.to_kc(context), self.to_vc(context)
qx, kx, vx = map(lambda t: einops.rearrange(t, 'B L (H D) -> B H L D',
H=self.num_heads), [qx, kx, vx])
qc, kc, vc = map(lambda t: einops.rearrange(t, 'B L (H D) -> B H L D',
H=self.num_heads), [qc, kc, vc])
qx, kx = self.norm_qx(qx), self.norm_kx(kx)
qc, kc = self.norm_qc(qc), self.norm_kc(kc)
q, k, v = (torch.cat([qc, qx], dim=2),
torch.cat([kc, kx], dim=2),
torch.cat([vc, vx], dim=2))
q, k = self._rotary(q, k, extras)
x = self._attn(q, k, v, mask_binary)
context, x = x[:, :Lc, :], x[:, Lc:, :]
x = self.proj_x(x)
x = self.proj_drop_x(x)
context = self.proj_c(context)
context = self.proj_drop_c(context)
return x, context