Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
from torch.cuda.amp import autocast | |
import math | |
import einops | |
from einops import rearrange, repeat | |
from inspect import isfunction | |
from .timm import trunc_normal_ | |
# disable in checkpoint mode | |
# @torch.jit.script | |
def film_modulate(x, shift, scale): | |
return x * (1 + scale) + shift | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = torch.exp( | |
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
class TimestepEmbedder(nn.Module): | |
""" | |
Embeds scalar timesteps into vector representations. | |
""" | |
def __init__(self, hidden_size, frequency_embedding_size=256, | |
out_size=None): | |
super().__init__() | |
if out_size is None: | |
out_size = hidden_size | |
self.mlp = nn.Sequential( | |
nn.Linear(frequency_embedding_size, hidden_size, bias=True), | |
nn.SiLU(), | |
nn.Linear(hidden_size, out_size, bias=True), | |
) | |
self.frequency_embedding_size = frequency_embedding_size | |
def forward(self, t): | |
t_freq = timestep_embedding(t, self.frequency_embedding_size).type( | |
self.mlp[0].weight.dtype) | |
t_emb = self.mlp(t_freq) | |
return t_emb | |
def patchify(imgs, patch_size, input_type='2d'): | |
if input_type == '2d': | |
x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) | |
elif input_type == '1d': | |
x = einops.rearrange(imgs, 'B C (h p1) -> B h (p1 C)', p1=patch_size) | |
return x | |
def unpatchify(x, channels=3, input_type='2d', img_size=None): | |
if input_type == '2d': | |
patch_size = int((x.shape[2] // channels) ** 0.5) | |
# h = w = int(x.shape[1] ** .5) | |
h, w = img_size[0] // patch_size, img_size[1] // patch_size | |
assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2] | |
x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, | |
p1=patch_size, p2=patch_size) | |
elif input_type == '1d': | |
patch_size = int((x.shape[2] // channels)) | |
h = x.shape[1] | |
assert patch_size * channels == x.shape[2] | |
x = einops.rearrange(x, 'B h (p1 C) -> B C (h p1)', h=h, p1=patch_size) | |
return x | |
class PatchEmbed(nn.Module): | |
""" | |
Image to Patch Embedding | |
""" | |
def __init__(self, patch_size, in_chans=3, embed_dim=768, input_type='2d'): | |
super().__init__() | |
self.patch_size = patch_size | |
self.input_type = input_type | |
if input_type == '2d': | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True) | |
elif input_type == '1d': | |
self.proj = nn.Conv1d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True) | |
def forward(self, x): | |
if self.input_type == '2d': | |
B, C, H, W = x.shape | |
assert H % self.patch_size == 0 and W % self.patch_size == 0 | |
elif self.input_type == '1d': | |
B, C, H = x.shape | |
assert H % self.patch_size == 0 | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class PositionalConvEmbedding(nn.Module): | |
""" | |
Relative positional embedding used in HuBERT | |
""" | |
def __init__(self, dim=768, kernel_size=128, groups=16): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
dim, | |
dim, | |
kernel_size=kernel_size, | |
padding=kernel_size // 2, | |
groups=groups, | |
bias=True | |
) | |
self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2) | |
def forward(self, x): | |
# B C T | |
x = self.conv(x) | |
x = F.gelu(x[:, :, :-1]) | |
return x | |
class SinusoidalPositionalEncoding(nn.Module): | |
def __init__(self, dim, length): | |
super(SinusoidalPositionalEncoding, self).__init__() | |
self.length = length | |
self.dim = dim | |
self.register_buffer('pe', self._generate_positional_encoding(length, dim)) | |
def _generate_positional_encoding(self, length, dim): | |
pe = torch.zeros(length, dim) | |
position = torch.arange(0, length, dtype=torch.float).unsqueeze(1) | |
div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
return pe | |
def forward(self, x): | |
x = x + self.pe[:, :x.size(1)] | |
return x | |
class PE_wrapper(nn.Module): | |
def __init__(self, dim=768, method='abs', length=None, **kwargs): | |
super().__init__() | |
self.method = method | |
if method == 'abs': | |
# init absolute pe like UViT | |
self.length = length | |
self.abs_pe = nn.Parameter(torch.zeros(1, length, dim)) | |
trunc_normal_(self.abs_pe, std=.02) | |
elif method == 'conv': | |
self.conv_pe = PositionalConvEmbedding(dim=dim, **kwargs) | |
elif method == 'sinu': | |
self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length) | |
elif method == 'none': | |
# skip pe | |
self.id = nn.Identity() | |
else: | |
raise NotImplementedError | |
def forward(self, x): | |
if self.method == 'abs': | |
_, L, _ = x.shape | |
assert L <= self.length | |
x = x + self.abs_pe[:, :L, :] | |
elif self.method == 'conv': | |
x = x + self.conv_pe(x) | |
elif self.method == 'sinu': | |
x = self.sinu_pe(x) | |
elif self.method == 'none': | |
x = self.id(x) | |
else: | |
raise NotImplementedError | |
return x | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int, eps: float = 1e-6): | |
""" | |
Initialize the RMSNorm normalization layer. | |
Args: | |
dim (int): The dimension of the input tensor. | |
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. | |
Attributes: | |
eps (float): A small value added to the denominator for numerical stability. | |
weight (nn.Parameter): Learnable scaling parameter. | |
""" | |
super().__init__() | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def _norm(self, x): | |
""" | |
Apply the RMSNorm normalization to the input tensor. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The normalized tensor. | |
""" | |
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) | |
def forward(self, x): | |
""" | |
Forward pass through the RMSNorm layer. | |
Args: | |
x (torch.Tensor): The input tensor. | |
Returns: | |
torch.Tensor: The output tensor after applying RMSNorm. | |
""" | |
output = self._norm(x.float()).type_as(x) | |
return output * self.weight | |
class GELU(nn.Module): | |
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", | |
bias: bool = True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
self.approximate = approximate | |
def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
if gate.device.type != "mps": | |
return F.gelu(gate, approximate=self.approximate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32), | |
approximate=self.approximate).to(dtype=gate.dtype) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states = self.gelu(hidden_states) | |
return hidden_states | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in: int, dim_out: int, bias: bool = True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) | |
def gelu(self, gate: torch.Tensor) -> torch.Tensor: | |
if gate.device.type != "mps": | |
return F.gelu(gate) | |
# mps: gelu is not implemented for float16 | |
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states, gate = hidden_states.chunk(2, dim=-1) | |
return hidden_states * self.gelu(gate) | |
class ApproximateGELU(nn.Module): | |
def __init__(self, dim_in: int, dim_out: int, bias: bool = True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.proj(x) | |
return x * torch.sigmoid(1.702 * x) | |
# disable in checkpoint mode | |
# @torch.jit.script | |
def snake_beta(x, alpha, beta): | |
return x + beta * torch.sin(x * alpha).pow(2) | |
class Snake(nn.Module): | |
def __init__(self, dim_in, dim_out, bias, | |
alpha_trainable=True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out, bias=bias) | |
self.alpha = nn.Parameter(torch.ones(1, 1, dim_out)) | |
self.beta = nn.Parameter(torch.ones(1, 1, dim_out)) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
def forward(self, x): | |
x = self.proj(x) | |
x = snake_beta(x, self.alpha, self.beta) | |
return x | |
class GESnake(nn.Module): | |
def __init__(self, dim_in, dim_out, bias, | |
alpha_trainable=True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) | |
self.alpha = nn.Parameter(torch.ones(1, 1, dim_out)) | |
self.beta = nn.Parameter(torch.ones(1, 1, dim_out)) | |
self.alpha.requires_grad = alpha_trainable | |
self.beta.requires_grad = alpha_trainable | |
def forward(self, x): | |
x = self.proj(x) | |
x, gate = x.chunk(2, dim=-1) | |
return x * snake_beta(gate, self.alpha, self.beta) | |
class FeedForward(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_out=None, | |
mult=4, | |
dropout=0.0, | |
activation_fn="geglu", | |
final_dropout=False, | |
inner_dim=None, | |
bias=True, | |
): | |
super().__init__() | |
if inner_dim is None: | |
inner_dim = int(dim * mult) | |
dim_out = dim_out if dim_out is not None else dim | |
if activation_fn == "gelu": | |
act_fn = GELU(dim, inner_dim, bias=bias) | |
elif activation_fn == "gelu-approximate": | |
act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) | |
elif activation_fn == "geglu": | |
act_fn = GEGLU(dim, inner_dim, bias=bias) | |
elif activation_fn == "geglu-approximate": | |
act_fn = ApproximateGELU(dim, inner_dim, bias=bias) | |
elif activation_fn == "snake": | |
act_fn = Snake(dim, inner_dim, bias=bias) | |
elif activation_fn == "gesnake": | |
act_fn = GESnake(dim, inner_dim, bias=bias) | |
else: | |
raise NotImplementedError | |
self.net = nn.ModuleList([]) | |
# project in | |
self.net.append(act_fn) | |
# project dropout | |
self.net.append(nn.Dropout(dropout)) | |
# project out | |
self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) | |
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout | |
if final_dropout: | |
self.net.append(nn.Dropout(dropout)) | |
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: | |
for module in self.net: | |
hidden_states = module(hidden_states) | |
return hidden_states |