Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import torch | |
import random | |
import spaces | |
import numpy as np | |
import gradio as gr | |
import soundfile as sf | |
from accelerate import Accelerator | |
from transformers import T5Tokenizer, T5EncoderModel | |
from diffusers import DDIMScheduler | |
from src.models.conditioners import MaskDiT | |
from src.modules.autoencoder_wrapper import Autoencoder | |
from src.inference import inference | |
from src.utils import load_yaml_with_includes | |
# Load model and configs | |
def load_models(config_name, ckpt_path, vae_path, device): | |
params = load_yaml_with_includes(config_name) | |
# Load codec model | |
autoencoder = Autoencoder(ckpt_path=vae_path, | |
model_type=params['autoencoder']['name'], | |
quantization_first=params['autoencoder']['q_first']).to(device) | |
autoencoder.eval() | |
# Load text encoder | |
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model']) | |
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device) | |
text_encoder.eval() | |
# Load main U-Net model | |
unet = MaskDiT(**params['model']).to(device) | |
unet.load_state_dict(torch.load(ckpt_path, map_location='cpu')['model']) | |
unet.eval() | |
accelerator = Accelerator(mixed_precision="fp16") | |
unet = accelerator.prepare(unet) | |
# Load noise scheduler | |
noise_scheduler = DDIMScheduler(**params['diff']) | |
latents = torch.randn((1, 128, 128), device=device) | |
noise = torch.randn_like(latents) | |
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device) | |
_ = noise_scheduler.add_noise(latents, noise, timesteps) | |
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params | |
MAX_SEED = np.iinfo(np.int32).max | |
# Model and config paths | |
config_name = 'ckpts/ezaudio-xl.yml' | |
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt' | |
vae_path = 'ckpts/vae/1m.pt' | |
save_path = 'output/' | |
os.makedirs(save_path, exist_ok=True) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path, | |
device) | |
def generate_audio(text, length, | |
guidance_scale, guidance_rescale, ddim_steps, eta, | |
random_seed, randomize_seed): | |
neg_text = None | |
length = length * params['autoencoder']['latent_sr'] | |
if randomize_seed: | |
random_seed = random.randint(0, MAX_SEED) | |
pred = inference(autoencoder, unet, None, None, | |
tokenizer, text_encoder, | |
params, noise_scheduler, | |
text, neg_text, | |
length, | |
guidance_scale, guidance_rescale, | |
ddim_steps, eta, random_seed, | |
device) | |
pred = pred.cpu().numpy().squeeze(0).squeeze(0) | |
# output_file = f"{save_path}/{text}.wav" | |
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr']) | |
return params['autoencoder']['sr'], pred | |
# Examples (if needed for the demo) | |
examples = [ | |
"the sound of rain falling softly", | |
"a dog barking in the distance", | |
"light guitar music is playing", | |
] | |
# CSS styling (optional) | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1280px; | |
} | |
""" | |
# Gradio Blocks layout | |
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
# EzAudio: High-quality Text-to-Audio Generator | |
Generate audio from text using a diffusion transformer. Adjust advanced settings for more control. | |
""") | |
# Basic Input: Text prompt | |
with gr.Row(): | |
text_input = gr.Textbox( | |
label="Text Prompt", | |
show_label=True, | |
max_lines=2, | |
placeholder="Enter your prompt", | |
container=True, | |
value="a dog barking in the distance", | |
scale=4 | |
) | |
# Run button | |
run_button = gr.Button("Generate", scale=1) | |
# Output Component | |
result = gr.Audio(label="Result", type="numpy") | |
# Advanced settings in an Accordion | |
with gr.Accordion("Advanced Settings", open=False): | |
# Audio Length | |
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)") | |
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale") | |
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale") | |
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps") | |
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta") | |
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed") | |
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True) | |
# Examples block | |
gr.Examples( | |
examples=examples, | |
inputs=[text_input] | |
) | |
# Define the trigger and input-output linking | |
run_button.click( | |
fn=generate_audio, | |
inputs=[text_input, length_input, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed], | |
outputs=[result] | |
) | |
text_input.submit(fn=generate_audio, | |
inputs=[text_input, length_input, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed], | |
outputs=[result] | |
) | |
# Launch the Gradio demo | |
demo.launch() | |