EzAudio / audiotools /data /datasets.py
OpenSound's picture
Upload 33 files
71de706 verified
raw
history blame
17.9 kB
from pathlib import Path
from typing import Callable
from typing import Dict
from typing import List
from typing import Union
import numpy as np
from torch.utils.data import SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from ..core import AudioSignal
from ..core import util
class AudioLoader:
"""Loads audio endlessly from a list of audio sources
containing paths to audio files. Audio sources can be
folders full of audio files (which are found via file
extension) or by providing a CSV file which contains paths
to audio files.
Parameters
----------
sources : List[str], optional
Sources containing folders, or CSVs with
paths to audio files, by default None
weights : List[float], optional
Weights to sample audio files from each source, by default None
relative_path : str, optional
Path audio should be loaded relative to, by default ""
transform : Callable, optional
Transform to instantiate alongside audio sample,
by default None
ext : List[str]
List of extensions to find audio within each source by. Can
also be a file name (e.g. "vocals.wav"). by default
``['.wav', '.flac', '.mp3', '.mp4']``.
shuffle: bool
Whether to shuffle the files within the dataloader. Defaults to True.
shuffle_state: int
State to use to seed the shuffle of the files.
"""
def __init__(
self,
sources: List[str] = None,
weights: List[float] = None,
transform: Callable = None,
relative_path: str = "",
ext: List[str] = util.AUDIO_EXTENSIONS,
shuffle: bool = True,
shuffle_state: int = 0,
):
self.audio_lists = util.read_sources(
sources, relative_path=relative_path, ext=ext
)
self.audio_indices = [
(src_idx, item_idx)
for src_idx, src in enumerate(self.audio_lists)
for item_idx in range(len(src))
]
if shuffle:
state = util.random_state(shuffle_state)
state.shuffle(self.audio_indices)
self.sources = sources
self.weights = weights
self.transform = transform
def __call__(
self,
state,
sample_rate: int,
duration: float,
loudness_cutoff: float = -40,
num_channels: int = 1,
offset: float = None,
source_idx: int = None,
item_idx: int = None,
global_idx: int = None,
):
if source_idx is not None and item_idx is not None:
try:
audio_info = self.audio_lists[source_idx][item_idx]
except:
audio_info = {"path": "none"}
elif global_idx is not None:
source_idx, item_idx = self.audio_indices[
global_idx % len(self.audio_indices)
]
audio_info = self.audio_lists[source_idx][item_idx]
else:
audio_info, source_idx, item_idx = util.choose_from_list_of_lists(
state, self.audio_lists, p=self.weights
)
path = audio_info["path"]
signal = AudioSignal.zeros(duration, sample_rate, num_channels)
if path != "none":
if offset is None:
signal = AudioSignal.salient_excerpt(
path,
duration=duration,
state=state,
loudness_cutoff=loudness_cutoff,
)
else:
signal = AudioSignal(
path,
offset=offset,
duration=duration,
)
if num_channels == 1:
signal = signal.to_mono()
signal = signal.resample(sample_rate)
if signal.duration < duration:
signal = signal.zero_pad_to(int(duration * sample_rate))
for k, v in audio_info.items():
signal.metadata[k] = v
item = {
"signal": signal,
"source_idx": source_idx,
"item_idx": item_idx,
"source": str(self.sources[source_idx]),
"path": str(path),
}
if self.transform is not None:
item["transform_args"] = self.transform.instantiate(state, signal=signal)
return item
def default_matcher(x, y):
return Path(x).parent == Path(y).parent
def align_lists(lists, matcher: Callable = default_matcher):
longest_list = lists[np.argmax([len(l) for l in lists])]
for i, x in enumerate(longest_list):
for l in lists:
if i >= len(l):
l.append({"path": "none"})
elif not matcher(l[i]["path"], x["path"]):
l.insert(i, {"path": "none"})
return lists
class AudioDataset:
"""Loads audio from multiple loaders (with associated transforms)
for a specified number of samples. Excerpts are drawn randomly
of the specified duration, above a specified loudness threshold
and are resampled on the fly to the desired sample rate
(if it is different from the audio source sample rate).
This takes either a single AudioLoader object,
a dictionary of AudioLoader objects, or a dictionary of AudioLoader
objects. Each AudioLoader is called by the dataset, and the
result is placed in the output dictionary. A transform can also be
specified for the entire dataset, rather than for each specific
loader. This transform can be applied to the output of all the
loaders if desired.
AudioLoader objects can be specified as aligned, which means the
loaders correspond to multitrack audio (e.g. a vocals, bass,
drums, and other loader for multitrack music mixtures).
Parameters
----------
loaders : Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]]
AudioLoaders to sample audio from.
sample_rate : int
Desired sample rate.
n_examples : int, optional
Number of examples (length of dataset), by default 1000
duration : float, optional
Duration of audio samples, by default 0.5
loudness_cutoff : float, optional
Loudness cutoff threshold for audio samples, by default -40
num_channels : int, optional
Number of channels in output audio, by default 1
transform : Callable, optional
Transform to instantiate alongside each dataset item, by default None
aligned : bool, optional
Whether the loaders should be sampled in an aligned manner (e.g. same
offset, duration, and matched file name), by default False
shuffle_loaders : bool, optional
Whether to shuffle the loaders before sampling from them, by default False
matcher : Callable
How to match files from adjacent audio lists (e.g. for a multitrack audio loader),
by default uses the parent directory of each file.
without_replacement : bool
Whether to choose files with or without replacement, by default True.
Examples
--------
>>> from audiotools.data.datasets import AudioLoader
>>> from audiotools.data.datasets import AudioDataset
>>> from audiotools import transforms as tfm
>>> import numpy as np
>>>
>>> loaders = [
>>> AudioLoader(
>>> sources=[f"tests/audio/spk"],
>>> transform=tfm.Equalizer(),
>>> ext=["wav"],
>>> )
>>> for i in range(5)
>>> ]
>>>
>>> dataset = AudioDataset(
>>> loaders = loaders,
>>> sample_rate = 44100,
>>> duration = 1.0,
>>> transform = tfm.RescaleAudio(),
>>> )
>>>
>>> item = dataset[np.random.randint(len(dataset))]
>>>
>>> for i in range(len(loaders)):
>>> item[i]["signal"] = loaders[i].transform(
>>> item[i]["signal"], **item[i]["transform_args"]
>>> )
>>> item[i]["signal"].widget(i)
>>>
>>> mix = sum([item[i]["signal"] for i in range(len(loaders))])
>>> mix = dataset.transform(mix, **item["transform_args"])
>>> mix.widget("mix")
Below is an example of how one could load MUSDB multitrack data:
>>> import audiotools as at
>>> from pathlib import Path
>>> from audiotools import transforms as tfm
>>> import numpy as np
>>> import torch
>>>
>>> def build_dataset(
>>> sample_rate: int = 44100,
>>> duration: float = 5.0,
>>> musdb_path: str = "~/.data/musdb/",
>>> ):
>>> musdb_path = Path(musdb_path).expanduser()
>>> loaders = {
>>> src: at.datasets.AudioLoader(
>>> sources=[musdb_path],
>>> transform=tfm.Compose(
>>> tfm.VolumeNorm(("uniform", -20, -10)),
>>> tfm.Silence(prob=0.1),
>>> ),
>>> ext=[f"{src}.wav"],
>>> )
>>> for src in ["vocals", "bass", "drums", "other"]
>>> }
>>>
>>> dataset = at.datasets.AudioDataset(
>>> loaders=loaders,
>>> sample_rate=sample_rate,
>>> duration=duration,
>>> num_channels=1,
>>> aligned=True,
>>> transform=tfm.RescaleAudio(),
>>> shuffle_loaders=True,
>>> )
>>> return dataset, list(loaders.keys())
>>>
>>> train_data, sources = build_dataset()
>>> dataloader = torch.utils.data.DataLoader(
>>> train_data,
>>> batch_size=16,
>>> num_workers=0,
>>> collate_fn=train_data.collate,
>>> )
>>> batch = next(iter(dataloader))
>>>
>>> for k in sources:
>>> src = batch[k]
>>> src["transformed"] = train_data.loaders[k].transform(
>>> src["signal"].clone(), **src["transform_args"]
>>> )
>>>
>>> mixture = sum(batch[k]["transformed"] for k in sources)
>>> mixture = train_data.transform(mixture, **batch["transform_args"])
>>>
>>> # Say a model takes the mix and gives back (n_batch, n_src, n_time).
>>> # Construct the targets:
>>> targets = at.AudioSignal.batch([batch[k]["transformed"] for k in sources], dim=1)
Similarly, here's example code for loading Slakh data:
>>> import audiotools as at
>>> from pathlib import Path
>>> from audiotools import transforms as tfm
>>> import numpy as np
>>> import torch
>>> import glob
>>>
>>> def build_dataset(
>>> sample_rate: int = 16000,
>>> duration: float = 10.0,
>>> slakh_path: str = "~/.data/slakh/",
>>> ):
>>> slakh_path = Path(slakh_path).expanduser()
>>>
>>> # Find the max number of sources in Slakh
>>> src_names = [x.name for x in list(slakh_path.glob("**/*.wav")) if "S" in str(x.name)]
>>> n_sources = len(list(set(src_names)))
>>>
>>> loaders = {
>>> f"S{i:02d}": at.datasets.AudioLoader(
>>> sources=[slakh_path],
>>> transform=tfm.Compose(
>>> tfm.VolumeNorm(("uniform", -20, -10)),
>>> tfm.Silence(prob=0.1),
>>> ),
>>> ext=[f"S{i:02d}.wav"],
>>> )
>>> for i in range(n_sources)
>>> }
>>> dataset = at.datasets.AudioDataset(
>>> loaders=loaders,
>>> sample_rate=sample_rate,
>>> duration=duration,
>>> num_channels=1,
>>> aligned=True,
>>> transform=tfm.RescaleAudio(),
>>> shuffle_loaders=False,
>>> )
>>>
>>> return dataset, list(loaders.keys())
>>>
>>> train_data, sources = build_dataset()
>>> dataloader = torch.utils.data.DataLoader(
>>> train_data,
>>> batch_size=16,
>>> num_workers=0,
>>> collate_fn=train_data.collate,
>>> )
>>> batch = next(iter(dataloader))
>>>
>>> for k in sources:
>>> src = batch[k]
>>> src["transformed"] = train_data.loaders[k].transform(
>>> src["signal"].clone(), **src["transform_args"]
>>> )
>>>
>>> mixture = sum(batch[k]["transformed"] for k in sources)
>>> mixture = train_data.transform(mixture, **batch["transform_args"])
"""
def __init__(
self,
loaders: Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]],
sample_rate: int,
n_examples: int = 1000,
duration: float = 0.5,
offset: float = None,
loudness_cutoff: float = -40,
num_channels: int = 1,
transform: Callable = None,
aligned: bool = False,
shuffle_loaders: bool = False,
matcher: Callable = default_matcher,
without_replacement: bool = True,
):
# Internally we convert loaders to a dictionary
if isinstance(loaders, list):
loaders = {i: l for i, l in enumerate(loaders)}
elif isinstance(loaders, AudioLoader):
loaders = {0: loaders}
self.loaders = loaders
self.loudness_cutoff = loudness_cutoff
self.num_channels = num_channels
self.length = n_examples
self.transform = transform
self.sample_rate = sample_rate
self.duration = duration
self.offset = offset
self.aligned = aligned
self.shuffle_loaders = shuffle_loaders
self.without_replacement = without_replacement
if aligned:
loaders_list = list(loaders.values())
for i in range(len(loaders_list[0].audio_lists)):
input_lists = [l.audio_lists[i] for l in loaders_list]
# Alignment happens in-place
align_lists(input_lists, matcher)
def __getitem__(self, idx):
state = util.random_state(idx)
offset = None if self.offset is None else self.offset
item = {}
keys = list(self.loaders.keys())
if self.shuffle_loaders:
state.shuffle(keys)
loader_kwargs = {
"state": state,
"sample_rate": self.sample_rate,
"duration": self.duration,
"loudness_cutoff": self.loudness_cutoff,
"num_channels": self.num_channels,
"global_idx": idx if self.without_replacement else None,
}
# Draw item from first loader
loader = self.loaders[keys[0]]
item[keys[0]] = loader(**loader_kwargs)
for key in keys[1:]:
loader = self.loaders[key]
if self.aligned:
# Path mapper takes the current loader + everything
# returned by the first loader.
offset = item[keys[0]]["signal"].metadata["offset"]
loader_kwargs.update(
{
"offset": offset,
"source_idx": item[keys[0]]["source_idx"],
"item_idx": item[keys[0]]["item_idx"],
}
)
item[key] = loader(**loader_kwargs)
# Sort dictionary back into original order
keys = list(self.loaders.keys())
item = {k: item[k] for k in keys}
item["idx"] = idx
if self.transform is not None:
item["transform_args"] = self.transform.instantiate(
state=state, signal=item[keys[0]]["signal"]
)
# If there's only one loader, pop it up
# to the main dictionary, instead of keeping it
# nested.
if len(keys) == 1:
item.update(item.pop(keys[0]))
return item
def __len__(self):
return self.length
@staticmethod
def collate(list_of_dicts: Union[list, dict], n_splits: int = None):
"""Collates items drawn from this dataset. Uses
:py:func:`audiotools.core.util.collate`.
Parameters
----------
list_of_dicts : typing.Union[list, dict]
Data drawn from each item.
n_splits : int
Number of splits to make when creating the batches (split into
sub-batches). Useful for things like gradient accumulation.
Returns
-------
dict
Dictionary of batched data.
"""
return util.collate(list_of_dicts, n_splits=n_splits)
class ConcatDataset(AudioDataset):
def __init__(self, datasets: list):
self.datasets = datasets
def __len__(self):
return sum([len(d) for d in self.datasets])
def __getitem__(self, idx):
dataset = self.datasets[idx % len(self.datasets)]
return dataset[idx // len(self.datasets)]
class ResumableDistributedSampler(DistributedSampler): # pragma: no cover
"""Distributed sampler that can be resumed from a given start index."""
def __init__(self, dataset, start_idx: int = None, **kwargs):
super().__init__(dataset, **kwargs)
# Start index, allows to resume an experiment at the index it was
self.start_idx = start_idx // self.num_replicas if start_idx is not None else 0
def __iter__(self):
for i, idx in enumerate(super().__iter__()):
if i >= self.start_idx:
yield idx
self.start_idx = 0 # set the index back to 0 so for the next epoch
class ResumableSequentialSampler(SequentialSampler): # pragma: no cover
"""Sequential sampler that can be resumed from a given start index."""
def __init__(self, dataset, start_idx: int = None, **kwargs):
super().__init__(dataset, **kwargs)
# Start index, allows to resume an experiment at the index it was
self.start_idx = start_idx if start_idx is not None else 0
def __iter__(self):
for i, idx in enumerate(super().__iter__()):
if i >= self.start_idx:
yield idx
self.start_idx = 0 # set the index back to 0 so for the next epoch