Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
from torch.utils.checkpoint import checkpoint | |
from .utils.attention import Attention, JointAttention | |
from .utils.modules import unpatchify, FeedForward | |
from .utils.modules import film_modulate | |
class AdaLN(nn.Module): | |
def __init__(self, dim, ada_mode='ada', r=None, alpha=None): | |
super().__init__() | |
self.ada_mode = ada_mode | |
self.scale_shift_table = None | |
if ada_mode == 'ada': | |
# move nn.silu outside | |
self.time_ada = nn.Linear(dim, 6 * dim, bias=True) | |
elif ada_mode == 'ada_single': | |
# adaln used in pixel-art alpha | |
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim)) | |
elif ada_mode in ['ada_lora', 'ada_lora_bias']: | |
self.lora_a = nn.Linear(dim, r * 6, bias=False) | |
self.lora_b = nn.Linear(r * 6, dim * 6, bias=False) | |
self.scaling = alpha / r | |
if ada_mode == 'ada_lora_bias': | |
# take bias out for consistency | |
self.scale_shift_table = nn.Parameter(torch.zeros(6, dim)) | |
else: | |
raise NotImplementedError | |
def forward(self, time_token=None, time_ada=None): | |
if self.ada_mode == 'ada': | |
assert time_ada is None | |
B = time_token.shape[0] | |
time_ada = self.time_ada(time_token).reshape(B, 6, -1) | |
elif self.ada_mode == 'ada_single': | |
B = time_ada.shape[0] | |
time_ada = time_ada.reshape(B, 6, -1) | |
time_ada = self.scale_shift_table[None] + time_ada | |
elif self.ada_mode in ['ada_lora', 'ada_lora_bias']: | |
B = time_ada.shape[0] | |
time_ada_lora = self.lora_b(self.lora_a(time_token)) * self.scaling | |
time_ada = time_ada + time_ada_lora | |
time_ada = time_ada.reshape(B, 6, -1) | |
if self.scale_shift_table is not None: | |
time_ada = self.scale_shift_table[None] + time_ada | |
else: | |
raise NotImplementedError | |
return time_ada | |
class DiTBlock(nn.Module): | |
""" | |
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning. | |
""" | |
def __init__(self, dim, context_dim=None, | |
num_heads=8, mlp_ratio=4., | |
qkv_bias=False, qk_scale=None, qk_norm=None, | |
act_layer='gelu', norm_layer=nn.LayerNorm, | |
time_fusion='none', | |
ada_lora_rank=None, ada_lora_alpha=None, | |
skip=False, skip_norm=False, | |
rope_mode='none', | |
context_norm=False, | |
use_checkpoint=False): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention(dim=dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, | |
qk_norm=qk_norm, | |
rope_mode=rope_mode) | |
if context_dim is not None: | |
self.use_context = True | |
self.cross_attn = Attention(dim=dim, | |
num_heads=num_heads, | |
context_dim=context_dim, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, | |
qk_norm=qk_norm, | |
rope_mode='none') | |
self.norm2 = norm_layer(dim) | |
if context_norm: | |
self.norm_context = norm_layer(context_dim) | |
else: | |
self.norm_context = nn.Identity() | |
else: | |
self.use_context = False | |
self.norm3 = norm_layer(dim) | |
self.mlp = FeedForward(dim=dim, mult=mlp_ratio, | |
activation_fn=act_layer, dropout=0) | |
self.use_adanorm = True if time_fusion != 'token' else False | |
if self.use_adanorm: | |
self.adaln = AdaLN(dim, ada_mode=time_fusion, | |
r=ada_lora_rank, alpha=ada_lora_alpha) | |
if skip: | |
self.skip_norm = norm_layer(2 * dim) if skip_norm else nn.Identity() | |
self.skip_linear = nn.Linear(2 * dim, dim) | |
else: | |
self.skip_linear = None | |
self.use_checkpoint = use_checkpoint | |
def forward(self, x, time_token=None, time_ada=None, | |
skip=None, context=None, | |
x_mask=None, context_mask=None, extras=None): | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, | |
time_token, time_ada, skip, context, | |
x_mask, context_mask, extras, | |
use_reentrant=False) | |
else: | |
return self._forward(x, | |
time_token, time_ada, skip, context, | |
x_mask, context_mask, extras) | |
def _forward(self, x, time_token=None, time_ada=None, | |
skip=None, context=None, | |
x_mask=None, context_mask=None, extras=None): | |
B, T, C = x.shape | |
if self.skip_linear is not None: | |
assert skip is not None | |
cat = torch.cat([x, skip], dim=-1) | |
cat = self.skip_norm(cat) | |
x = self.skip_linear(cat) | |
if self.use_adanorm: | |
time_ada = self.adaln(time_token, time_ada) | |
(shift_msa, scale_msa, gate_msa, | |
shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1) | |
# self attention | |
if self.use_adanorm: | |
x_norm = film_modulate(self.norm1(x), shift=shift_msa, | |
scale=scale_msa) | |
x = x + (1 - gate_msa) * self.attn(x_norm, context=None, | |
context_mask=x_mask, | |
extras=extras) | |
else: | |
x = x + self.attn(self.norm1(x), context=None, context_mask=x_mask, | |
extras=extras) | |
# cross attention | |
if self.use_context: | |
assert context is not None | |
x = x + self.cross_attn(x=self.norm2(x), | |
context=self.norm_context(context), | |
context_mask=context_mask, extras=extras) | |
# mlp | |
if self.use_adanorm: | |
x_norm = film_modulate(self.norm3(x), shift=shift_mlp, scale=scale_mlp) | |
x = x + (1 - gate_mlp) * self.mlp(x_norm) | |
else: | |
x = x + self.mlp(self.norm3(x)) | |
return x | |
class JointDiTBlock(nn.Module): | |
""" | |
A modified PixArt block with adaptive layer norm (adaLN-single) conditioning. | |
""" | |
def __init__(self, dim, context_dim=None, | |
num_heads=8, mlp_ratio=4., | |
qkv_bias=False, qk_scale=None, qk_norm=None, | |
act_layer='gelu', norm_layer=nn.LayerNorm, | |
time_fusion='none', | |
ada_lora_rank=None, ada_lora_alpha=None, | |
skip=(False, False), | |
rope_mode=False, | |
context_norm=False, | |
use_checkpoint=False,): | |
super().__init__() | |
# no cross attention | |
assert context_dim is None | |
self.attn_norm_x = norm_layer(dim) | |
self.attn_norm_c = norm_layer(dim) | |
self.attn = JointAttention(dim=dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, qk_scale=qk_scale, | |
qk_norm=qk_norm, | |
rope_mode=rope_mode) | |
self.ffn_norm_x = norm_layer(dim) | |
self.ffn_norm_c = norm_layer(dim) | |
self.mlp_x = FeedForward(dim=dim, mult=mlp_ratio, | |
activation_fn=act_layer, dropout=0) | |
self.mlp_c = FeedForward(dim=dim, mult=mlp_ratio, | |
activation_fn=act_layer, dropout=0) | |
# Zero-out the shift table | |
self.use_adanorm = True if time_fusion != 'token' else False | |
if self.use_adanorm: | |
self.adaln = AdaLN(dim, ada_mode=time_fusion, | |
r=ada_lora_rank, alpha=ada_lora_alpha) | |
if skip is False: | |
skip_x, skip_c = False, False | |
else: | |
skip_x, skip_c = skip | |
self.skip_linear_x = nn.Linear(2 * dim, dim) if skip_x else None | |
self.skip_linear_c = nn.Linear(2 * dim, dim) if skip_c else None | |
self.use_checkpoint = use_checkpoint | |
def forward(self, x, time_token=None, time_ada=None, | |
skip=None, context=None, | |
x_mask=None, context_mask=None, extras=None): | |
if self.use_checkpoint: | |
return checkpoint(self._forward, x, | |
time_token, time_ada, skip, | |
context, x_mask, context_mask, extras, | |
use_reentrant=False) | |
else: | |
return self._forward(x, | |
time_token, time_ada, skip, | |
context, x_mask, context_mask, extras) | |
def _forward(self, x, time_token=None, time_ada=None, | |
skip=None, context=None, | |
x_mask=None, context_mask=None, extras=None): | |
assert context is None and context_mask is None | |
context, x = x[:, :extras, :], x[:, extras:, :] | |
context_mask, x_mask = x_mask[:, :extras], x_mask[:, extras:] | |
if skip is not None: | |
skip_c, skip_x = skip[:, :extras, :], skip[:, extras:, :] | |
B, T, C = x.shape | |
if self.skip_linear_x is not None: | |
x = self.skip_linear_x(torch.cat([x, skip_x], dim=-1)) | |
if self.skip_linear_c is not None: | |
context = self.skip_linear_c(torch.cat([context, skip_c], dim=-1)) | |
if self.use_adanorm: | |
time_ada = self.adaln(time_token, time_ada) | |
(shift_msa, scale_msa, gate_msa, | |
shift_mlp, scale_mlp, gate_mlp) = time_ada.chunk(6, dim=1) | |
# self attention | |
x_norm = self.attn_norm_x(x) | |
c_norm = self.attn_norm_c(context) | |
if self.use_adanorm: | |
x_norm = film_modulate(x_norm, shift=shift_msa, scale=scale_msa) | |
x_out, c_out = self.attn(x_norm, context=c_norm, | |
x_mask=x_mask, context_mask=context_mask, | |
extras=extras) | |
if self.use_adanorm: | |
x = x + (1 - gate_msa) * x_out | |
else: | |
x = x + x_out | |
context = context + c_out | |
# mlp | |
if self.use_adanorm: | |
x_norm = film_modulate(self.ffn_norm_x(x), | |
shift=shift_mlp, scale=scale_mlp) | |
x = x + (1 - gate_mlp) * self.mlp_x(x_norm) | |
else: | |
x = x + self.mlp_x(self.ffn_norm_x(x)) | |
c_norm = self.ffn_norm_c(context) | |
context = context + self.mlp_c(c_norm) | |
return torch.cat((context, x), dim=1) | |
class FinalBlock(nn.Module): | |
def __init__(self, embed_dim, patch_size, in_chans, | |
img_size, | |
input_type='2d', | |
norm_layer=nn.LayerNorm, | |
use_conv=True, | |
use_adanorm=True): | |
super().__init__() | |
self.in_chans = in_chans | |
self.img_size = img_size | |
self.input_type = input_type | |
self.norm = norm_layer(embed_dim) | |
if use_adanorm: | |
self.use_adanorm = True | |
else: | |
self.use_adanorm = False | |
if input_type == '2d': | |
self.patch_dim = patch_size ** 2 * in_chans | |
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True) | |
if use_conv: | |
self.final_layer = nn.Conv2d(self.in_chans, self.in_chans, | |
3, padding=1) | |
else: | |
self.final_layer = nn.Identity() | |
elif input_type == '1d': | |
self.patch_dim = patch_size * in_chans | |
self.linear = nn.Linear(embed_dim, self.patch_dim, bias=True) | |
if use_conv: | |
self.final_layer = nn.Conv1d(self.in_chans, self.in_chans, | |
3, padding=1) | |
else: | |
self.final_layer = nn.Identity() | |
def forward(self, x, time_ada=None, extras=0): | |
B, T, C = x.shape | |
x = x[:, extras:, :] | |
# only handle generation target | |
if self.use_adanorm: | |
shift, scale = time_ada.reshape(B, 2, -1).chunk(2, dim=1) | |
x = film_modulate(self.norm(x), shift, scale) | |
else: | |
x = self.norm(x) | |
x = self.linear(x) | |
x = unpatchify(x, self.in_chans, self.input_type, self.img_size) | |
x = self.final_layer(x) | |
return x |