OpenSound's picture
Upload 33 files
71de706 verified
raw
history blame
3.91 kB
import torch
from torch import nn
from .. import AudioSignal
class L1Loss(nn.L1Loss):
"""L1 Loss between AudioSignals. Defaults
to comparing ``audio_data``, but any
attribute of an AudioSignal can be used.
Parameters
----------
attribute : str, optional
Attribute of signal to compare, defaults to ``audio_data``.
weight : float, optional
Weight of this loss, defaults to 1.0.
"""
def __init__(self, attribute: str = "audio_data", weight: float = 1.0, **kwargs):
self.attribute = attribute
self.weight = weight
super().__init__(**kwargs)
def forward(self, x: AudioSignal, y: AudioSignal):
"""
Parameters
----------
x : AudioSignal
Estimate AudioSignal
y : AudioSignal
Reference AudioSignal
Returns
-------
torch.Tensor
L1 loss between AudioSignal attributes.
"""
if isinstance(x, AudioSignal):
x = getattr(x, self.attribute)
y = getattr(y, self.attribute)
return super().forward(x, y)
class SISDRLoss(nn.Module):
"""
Computes the Scale-Invariant Source-to-Distortion Ratio between a batch
of estimated and reference audio signals or aligned features.
Parameters
----------
scaling : int, optional
Whether to use scale-invariant (True) or
signal-to-noise ratio (False), by default True
reduction : str, optional
How to reduce across the batch (either 'mean',
'sum', or none).], by default ' mean'
zero_mean : int, optional
Zero mean the references and estimates before
computing the loss, by default True
clip_min : int, optional
The minimum possible loss value. Helps network
to not focus on making already good examples better, by default None
weight : float, optional
Weight of this loss, defaults to 1.0.
"""
def __init__(
self,
scaling: int = True,
reduction: str = "mean",
zero_mean: int = True,
clip_min: int = None,
weight: float = 1.0,
):
self.scaling = scaling
self.reduction = reduction
self.zero_mean = zero_mean
self.clip_min = clip_min
self.weight = weight
super().__init__()
def forward(self, x: AudioSignal, y: AudioSignal):
eps = 1e-8
# nb, nc, nt
if isinstance(x, AudioSignal):
references = x.audio_data
estimates = y.audio_data
else:
references = x
estimates = y
nb = references.shape[0]
references = references.reshape(nb, 1, -1).permute(0, 2, 1)
estimates = estimates.reshape(nb, 1, -1).permute(0, 2, 1)
# samples now on axis 1
if self.zero_mean:
mean_reference = references.mean(dim=1, keepdim=True)
mean_estimate = estimates.mean(dim=1, keepdim=True)
else:
mean_reference = 0
mean_estimate = 0
_references = references - mean_reference
_estimates = estimates - mean_estimate
references_projection = (_references**2).sum(dim=-2) + eps
references_on_estimates = (_estimates * _references).sum(dim=-2) + eps
scale = (
(references_on_estimates / references_projection).unsqueeze(1)
if self.scaling
else 1
)
e_true = scale * _references
e_res = _estimates - e_true
signal = (e_true**2).sum(dim=1)
noise = (e_res**2).sum(dim=1)
sdr = -10 * torch.log10(signal / noise + eps)
if self.clip_min is not None:
sdr = torch.clamp(sdr, min=self.clip_min)
if self.reduction == "mean":
sdr = sdr.mean()
elif self.reduction == "sum":
sdr = sdr.sum()
return sdr