Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesadd editing mode
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
import random
|
4 |
-
import spaces
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
-
import
|
|
|
8 |
from accelerate import Accelerator
|
9 |
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
from diffusers import DDIMScheduler
|
@@ -54,9 +54,8 @@ MAX_SEED = np.iinfo(np.int32).max
|
|
54 |
config_name = 'ckpts/ezaudio-xl.yml'
|
55 |
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
|
56 |
vae_path = 'ckpts/vae/1m.pt'
|
57 |
-
save_path = 'output/'
|
58 |
-
os.makedirs(save_path, exist_ok=True)
|
59 |
-
|
60 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
61 |
|
62 |
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
|
@@ -70,10 +69,17 @@ def generate_audio(text, length,
|
|
70 |
neg_text = None
|
71 |
length = length * params['autoencoder']['latent_sr']
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
if randomize_seed:
|
74 |
random_seed = random.randint(0, MAX_SEED)
|
75 |
|
76 |
-
pred = inference(autoencoder, unet,
|
|
|
77 |
tokenizer, text_encoder,
|
78 |
params, noise_scheduler,
|
79 |
text, neg_text,
|
@@ -89,13 +95,100 @@ def generate_audio(text, length,
|
|
89 |
return params['autoencoder']['sr'], pred
|
90 |
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
# Examples (if needed for the demo)
|
93 |
examples = [
|
94 |
-
"the sound of rain falling softly",
|
95 |
"a dog barking in the distance",
|
|
|
96 |
"light guitar music is playing",
|
97 |
]
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
# CSS styling (optional)
|
100 |
css = """
|
101 |
#col-container {
|
@@ -109,53 +202,136 @@ with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
|
|
109 |
with gr.Column(elem_id="col-container"):
|
110 |
gr.Markdown("""
|
111 |
# EzAudio: High-quality Text-to-Audio Generator
|
112 |
-
Generate audio from text using a diffusion transformer. Adjust advanced settings for more control.
|
113 |
""")
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
import random
|
|
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
6 |
+
import librosa
|
7 |
+
import space
|
8 |
from accelerate import Accelerator
|
9 |
from transformers import T5Tokenizer, T5EncoderModel
|
10 |
from diffusers import DDIMScheduler
|
|
|
54 |
config_name = 'ckpts/ezaudio-xl.yml'
|
55 |
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
|
56 |
vae_path = 'ckpts/vae/1m.pt'
|
57 |
+
# save_path = 'output/'
|
58 |
+
# os.makedirs(save_path, exist_ok=True)
|
|
|
59 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
60 |
|
61 |
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
|
|
|
69 |
neg_text = None
|
70 |
length = length * params['autoencoder']['latent_sr']
|
71 |
|
72 |
+
gt, gt_mask = None, None
|
73 |
+
|
74 |
+
if text == '':
|
75 |
+
guidance_scale = None
|
76 |
+
print('empyt input')
|
77 |
+
|
78 |
if randomize_seed:
|
79 |
random_seed = random.randint(0, MAX_SEED)
|
80 |
|
81 |
+
pred = inference(autoencoder, unet,
|
82 |
+
gt, gt_mask,
|
83 |
tokenizer, text_encoder,
|
84 |
params, noise_scheduler,
|
85 |
text, neg_text,
|
|
|
95 |
return params['autoencoder']['sr'], pred
|
96 |
|
97 |
|
98 |
+
@spaces.GPU
|
99 |
+
def editing_audio(text, boundary,
|
100 |
+
gt_file, mask_start, mask_length,
|
101 |
+
guidance_scale, guidance_rescale, ddim_steps, eta,
|
102 |
+
random_seed, randomize_seed):
|
103 |
+
neg_text = None
|
104 |
+
max_length = 10
|
105 |
+
|
106 |
+
if text == '':
|
107 |
+
guidance_scale = None
|
108 |
+
print('empyt input')
|
109 |
+
|
110 |
+
mask_end = mask_start + mask_length
|
111 |
+
|
112 |
+
# Load and preprocess ground truth audio
|
113 |
+
gt, sr = librosa.load(gt_file, sr=params['autoencoder']['sr'])
|
114 |
+
gt = gt / (np.max(np.abs(gt)) + 1e-9)
|
115 |
+
|
116 |
+
audio_length = len(gt) / sr
|
117 |
+
mask_start = min(mask_start, audio_length)
|
118 |
+
if mask_end > audio_length:
|
119 |
+
# outpadding mode
|
120 |
+
padding = round((mask_end - audio_length)*params['autoencoder']['sr'])
|
121 |
+
gt = np.pad(gt, (0, padding), 'constant')
|
122 |
+
audio_length = len(gt) / sr
|
123 |
+
|
124 |
+
output_audio = gt.copy()
|
125 |
+
|
126 |
+
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
|
127 |
+
boundary = min((max_length - (mask_end - mask_start))/2, (mask_end - mask_start)/2, boundary)
|
128 |
+
# print(boundary)
|
129 |
+
|
130 |
+
# Calculate start and end indices
|
131 |
+
start_idx = max(mask_start - boundary, 0)
|
132 |
+
end_idx = min(mask_end + boundary, audio_length)
|
133 |
+
# print(start_idx)
|
134 |
+
# print(end_idx)
|
135 |
+
|
136 |
+
mask_start -= start_idx
|
137 |
+
mask_end -= start_idx
|
138 |
+
|
139 |
+
gt = gt[:, :, round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])]
|
140 |
+
|
141 |
+
# Encode the audio to latent space
|
142 |
+
gt_latent = autoencoder(audio=gt)
|
143 |
+
B, D, L = gt_latent.shape
|
144 |
+
length = L
|
145 |
+
|
146 |
+
gt_mask = torch.zeros(B, D, L).to(device)
|
147 |
+
latent_sr = params['autoencoder']['latent_sr']
|
148 |
+
gt_mask[:, :, round(mask_start * latent_sr): round(mask_end * latent_sr)] = 1
|
149 |
+
gt_mask = gt_mask.bool()
|
150 |
+
|
151 |
+
if randomize_seed:
|
152 |
+
random_seed = random.randint(0, MAX_SEED)
|
153 |
+
|
154 |
+
# Perform inference to get the edited latent representation
|
155 |
+
pred = inference(autoencoder, unet,
|
156 |
+
gt_latent, gt_mask,
|
157 |
+
tokenizer, text_encoder,
|
158 |
+
params, noise_scheduler,
|
159 |
+
text, neg_text,
|
160 |
+
length,
|
161 |
+
guidance_scale, guidance_rescale,
|
162 |
+
ddim_steps, eta, random_seed,
|
163 |
+
device)
|
164 |
+
|
165 |
+
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
|
166 |
+
|
167 |
+
chunk_length = end_idx - start_idx
|
168 |
+
pred = pred[:round(chunk_length*params['autoencoder']['sr'])]
|
169 |
+
|
170 |
+
output_audio[round(start_idx*params['autoencoder']['sr']):round(end_idx*params['autoencoder']['sr'])] = pred
|
171 |
+
|
172 |
+
pred = output_audio
|
173 |
+
|
174 |
+
return params['autoencoder']['sr'], pred
|
175 |
+
|
176 |
+
|
177 |
# Examples (if needed for the demo)
|
178 |
examples = [
|
|
|
179 |
"a dog barking in the distance",
|
180 |
+
"the sound of rain falling softly",
|
181 |
"light guitar music is playing",
|
182 |
]
|
183 |
|
184 |
+
# Examples (if needed for the demo)
|
185 |
+
examples_edit = [
|
186 |
+
["a dog barking in the background", 6, 3],
|
187 |
+
["kids playing and laughing nearby", 5, 4],
|
188 |
+
["rock music playing on the street", 8, 6]
|
189 |
+
]
|
190 |
+
|
191 |
+
|
192 |
# CSS styling (optional)
|
193 |
css = """
|
194 |
#col-container {
|
|
|
202 |
with gr.Column(elem_id="col-container"):
|
203 |
gr.Markdown("""
|
204 |
# EzAudio: High-quality Text-to-Audio Generator
|
205 |
+
Generate and edit audio from text using a diffusion transformer. Adjust advanced settings for more control.
|
206 |
""")
|
207 |
|
208 |
+
# Tabs for Generate and Edit
|
209 |
+
with gr.Tab("Audio Generation"):
|
210 |
+
# Basic Input: Text prompt
|
211 |
+
with gr.Row():
|
212 |
+
text_input = gr.Textbox(
|
213 |
+
label="Text Prompt",
|
214 |
+
show_label=True,
|
215 |
+
max_lines=2,
|
216 |
+
placeholder="Enter your prompt",
|
217 |
+
container=True,
|
218 |
+
value="a dog barking in the distance",
|
219 |
+
scale=4
|
220 |
+
)
|
221 |
+
# Run button
|
222 |
+
run_button = gr.Button("Generate", scale=1)
|
223 |
+
|
224 |
+
# Output Component
|
225 |
+
result = gr.Audio(label="Generate", type="numpy")
|
226 |
+
|
227 |
+
# Advanced settings in an Accordion
|
228 |
+
with gr.Accordion("Advanced Settings", open=False):
|
229 |
+
# Audio Length
|
230 |
+
audio_length = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
|
231 |
+
guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5.0, label="Guidance Scale")
|
232 |
+
guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
|
233 |
+
ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
|
234 |
+
eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
|
235 |
+
seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
|
236 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
|
237 |
+
|
238 |
+
# Examples block
|
239 |
+
gr.Examples(
|
240 |
+
examples=examples,
|
241 |
+
inputs=[text_input]
|
242 |
+
)
|
243 |
+
|
244 |
+
# Define the trigger and input-output linking for generation
|
245 |
+
run_button.click(
|
246 |
+
fn=generate_audio,
|
247 |
+
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
|
248 |
+
outputs=[result]
|
249 |
+
)
|
250 |
+
text_input.submit(fn=generate_audio,
|
251 |
+
inputs=[text_input, audio_length, guidance_scale, guidance_rescale, ddim_steps, eta, seed, randomize_seed],
|
252 |
+
outputs=[result]
|
253 |
+
)
|
254 |
+
|
255 |
+
with gr.Tab("Audio Editing and Inpainting"):
|
256 |
+
# Input: Upload audio file
|
257 |
+
with gr.Row():
|
258 |
+
gt_file_input = gr.Audio(label="Upload Audio to Edit", type="filepath", value="edit_example.wav")
|
259 |
+
|
260 |
+
# Text prompt for editing
|
261 |
+
text_edit_input = gr.Textbox(
|
262 |
+
label="Edit Prompt",
|
263 |
+
show_label=True,
|
264 |
+
max_lines=2,
|
265 |
+
placeholder="Describe the edit you wat",
|
266 |
+
container=True,
|
267 |
+
value="a dog barking in the background",
|
268 |
+
scale=4
|
269 |
+
)
|
270 |
+
|
271 |
+
# Mask settings
|
272 |
+
mask_start = gr.Number(label="Edit Start (seconds)", value=6.0)
|
273 |
+
mask_length = gr.Slider(minimum=0.5, maximum=10, step=0.5, value=3, label="Edit Length (seconds)")
|
274 |
+
|
275 |
+
edit_explanation = gr.Markdown(value="**Edit Start**: Time (in seconds) when the edit begins. \n\n**Edit Length**: Duration (in seconds) of the segment to be edited. \n\n**Outpainting**: If the sum of the start time and edit length exceeds the audio length, the Outpainting Mode will be activated.")
|
276 |
+
|
277 |
+
# Run button for editing
|
278 |
+
edit_button = gr.Button("Generate", scale=1)
|
279 |
+
|
280 |
+
# Output Component for edited audio
|
281 |
+
edited_result = gr.Audio(label="Edited Audio", type="numpy")
|
282 |
+
|
283 |
+
# Advanced settings in an Accordion
|
284 |
+
with gr.Accordion("Advanced Settings", open=False):
|
285 |
+
# Audio Length (optional for editing, can be auto or user-defined)
|
286 |
+
edit_boundary = gr.Slider(minimum=0.5, maximum=4, step=0.5, value=2, label="Edit Boundary (in seconds)")
|
287 |
+
edit_guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.5, value=5.0, label="Guidance Scale")
|
288 |
+
edit_guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
|
289 |
+
edit_ddim_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
|
290 |
+
edit_eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="Eta")
|
291 |
+
edit_seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")
|
292 |
+
edit_randomize_seed = gr.Checkbox(label="Randomize Seed (Disable Seed)", value=True)
|
293 |
+
|
294 |
+
# Examples block
|
295 |
+
gr.Examples(
|
296 |
+
examples=examples_edit,
|
297 |
+
inputs=[text_edit_input, mask_start, mask_length]
|
298 |
+
)
|
299 |
+
|
300 |
+
# Define the trigger and input-output linking for editing
|
301 |
+
edit_button.click(
|
302 |
+
fn=editing_audio,
|
303 |
+
inputs=[
|
304 |
+
text_edit_input,
|
305 |
+
edit_boundary,
|
306 |
+
gt_file_input,
|
307 |
+
mask_start,
|
308 |
+
mask_length,
|
309 |
+
edit_guidance_scale,
|
310 |
+
edit_guidance_rescale,
|
311 |
+
edit_ddim_steps,
|
312 |
+
edit_eta,
|
313 |
+
edit_seed,
|
314 |
+
edit_randomize_seed
|
315 |
+
],
|
316 |
+
outputs=[edited_result]
|
317 |
+
)
|
318 |
+
text_edit_input.submit(
|
319 |
+
fn=editing_audio,
|
320 |
+
inputs=[
|
321 |
+
text_edit_input,
|
322 |
+
edit_boundary,
|
323 |
+
gt_file_input,
|
324 |
+
mask_start,
|
325 |
+
mask_length,
|
326 |
+
edit_guidance_scale,
|
327 |
+
edit_guidance_rescale,
|
328 |
+
edit_ddim_steps,
|
329 |
+
edit_eta,
|
330 |
+
edit_seed,
|
331 |
+
edit_randomize_seed
|
332 |
+
],
|
333 |
+
outputs=[edited_result]
|
334 |
+
)
|
335 |
+
|
336 |
+
# Launch the Gradio demo
|
337 |
+
demo.launch()
|