Spaces:
Running
on
Zero
Running
on
Zero
Update src/inference.py
Browse files- src/inference.py +169 -169
src/inference.py
CHANGED
@@ -1,169 +1,169 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import pandas as pd
|
4 |
-
import torch
|
5 |
-
import librosa
|
6 |
-
import numpy as np
|
7 |
-
import soundfile as sf
|
8 |
-
from tqdm import tqdm
|
9 |
-
from utils import scale_shift_re
|
10 |
-
|
11 |
-
|
12 |
-
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
13 |
-
"""
|
14 |
-
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
15 |
-
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
16 |
-
"""
|
17 |
-
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
18 |
-
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
19 |
-
# rescale the results from guidance (fixes overexposure)
|
20 |
-
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
21 |
-
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
22 |
-
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
23 |
-
return noise_cfg
|
24 |
-
|
25 |
-
|
26 |
-
@torch.no_grad()
|
27 |
-
def inference(autoencoder, unet, gt, gt_mask,
|
28 |
-
tokenizer, text_encoder,
|
29 |
-
params, noise_scheduler,
|
30 |
-
text_raw, neg_text=None,
|
31 |
-
audio_frames=500,
|
32 |
-
guidance_scale=3, guidance_rescale=0.0,
|
33 |
-
ddim_steps=50, eta=1, random_seed=2024,
|
34 |
-
device='cuda',
|
35 |
-
):
|
36 |
-
if neg_text is None:
|
37 |
-
neg_text = [""]
|
38 |
-
if tokenizer is not None:
|
39 |
-
text_batch = tokenizer(text_raw,
|
40 |
-
max_length=params['text_encoder']['max_length'],
|
41 |
-
padding="max_length", truncation=True, return_tensors="pt")
|
42 |
-
text, text_mask = text_batch.input_ids.to(device), text_batch.attention_mask.to(device).bool()
|
43 |
-
text = text_encoder(input_ids=text, attention_mask=text_mask).last_hidden_state
|
44 |
-
|
45 |
-
uncond_text_batch = tokenizer(neg_text,
|
46 |
-
max_length=params['text_encoder']['max_length'],
|
47 |
-
padding="max_length", truncation=True, return_tensors="pt")
|
48 |
-
uncond_text, uncond_text_mask = uncond_text_batch.input_ids.to(device), uncond_text_batch.attention_mask.to(device).bool()
|
49 |
-
uncond_text = text_encoder(input_ids=uncond_text,
|
50 |
-
attention_mask=uncond_text_mask).last_hidden_state
|
51 |
-
else:
|
52 |
-
text, text_mask = None, None
|
53 |
-
guidance_scale = None
|
54 |
-
|
55 |
-
codec_dim = params['model']['out_chans']
|
56 |
-
unet.eval()
|
57 |
-
|
58 |
-
if random_seed is not None:
|
59 |
-
generator = torch.Generator(device=device).manual_seed(random_seed)
|
60 |
-
else:
|
61 |
-
generator = torch.Generator(device=device)
|
62 |
-
generator.seed()
|
63 |
-
|
64 |
-
noise_scheduler.set_timesteps(ddim_steps)
|
65 |
-
|
66 |
-
# init noise
|
67 |
-
noise = torch.randn((1, codec_dim, audio_frames), generator=generator, device=device)
|
68 |
-
latents = noise
|
69 |
-
|
70 |
-
for t in noise_scheduler.timesteps:
|
71 |
-
latents = noise_scheduler.scale_model_input(latents, t)
|
72 |
-
|
73 |
-
if guidance_scale:
|
74 |
-
|
75 |
-
latents_combined = torch.cat([latents, latents], dim=0)
|
76 |
-
text_combined = torch.cat([text, uncond_text], dim=0)
|
77 |
-
text_mask_combined = torch.cat([text_mask, uncond_text_mask], dim=0)
|
78 |
-
|
79 |
-
if gt is not None:
|
80 |
-
gt_combined = torch.cat([gt, gt], dim=0)
|
81 |
-
gt_mask_combined = torch.cat([gt_mask, gt_mask], dim=0)
|
82 |
-
else:
|
83 |
-
gt_combined = None
|
84 |
-
gt_mask_combined = None
|
85 |
-
|
86 |
-
output_combined, _ = unet(latents_combined, t, text_combined, context_mask=text_mask_combined,
|
87 |
-
cls_token=None, gt=gt_combined, mae_mask_infer=gt_mask_combined)
|
88 |
-
output_text, output_uncond = torch.chunk(output_combined, 2, dim=0)
|
89 |
-
|
90 |
-
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
91 |
-
if guidance_rescale > 0.0:
|
92 |
-
output_pred = rescale_noise_cfg(output_pred, output_text,
|
93 |
-
guidance_rescale=guidance_rescale)
|
94 |
-
else:
|
95 |
-
output_pred, mae_mask = unet(latents, t, text, context_mask=text_mask,
|
96 |
-
cls_token=None, gt=gt, mae_mask_infer=gt_mask)
|
97 |
-
|
98 |
-
latents = noise_scheduler.step(model_output=output_pred, timestep=t,
|
99 |
-
sample=latents,
|
100 |
-
eta=eta, generator=generator).prev_sample
|
101 |
-
|
102 |
-
pred = scale_shift_re(latents, params['autoencoder']['scale'],
|
103 |
-
params['autoencoder']['shift'])
|
104 |
-
if gt is not None:
|
105 |
-
pred[~gt_mask] = gt[~gt_mask]
|
106 |
-
pred_wav = autoencoder(embedding=pred)
|
107 |
-
return pred_wav
|
108 |
-
|
109 |
-
|
110 |
-
@torch.no_grad()
|
111 |
-
def eval_udit(autoencoder, unet,
|
112 |
-
tokenizer, text_encoder,
|
113 |
-
params, noise_scheduler,
|
114 |
-
val_df, subset,
|
115 |
-
audio_frames, mae=False,
|
116 |
-
guidance_scale=3, guidance_rescale=0.0,
|
117 |
-
ddim_steps=50, eta=1, random_seed=2023,
|
118 |
-
device='cuda',
|
119 |
-
epoch=0, save_path='logs/eval/', val_num=5):
|
120 |
-
val_df = pd.read_csv(val_df)
|
121 |
-
val_df = val_df[val_df['split'] == subset]
|
122 |
-
if mae:
|
123 |
-
val_df = val_df[val_df['audio_length'] != 0]
|
124 |
-
|
125 |
-
save_path = save_path + str(epoch) + '/'
|
126 |
-
os.makedirs(save_path, exist_ok=True)
|
127 |
-
|
128 |
-
for i in tqdm(range(len(val_df))):
|
129 |
-
row = val_df.iloc[i]
|
130 |
-
text = [row['caption']]
|
131 |
-
if mae:
|
132 |
-
audio_path = params['data']['val_dir'] + str(row['audio_path'])
|
133 |
-
gt, sr = librosa.load(audio_path, sr=params['data']['sr'])
|
134 |
-
gt = gt / (np.max(np.abs(gt)) + 1e-9)
|
135 |
-
sf.write(save_path + text[0] + '_gt.wav', gt, samplerate=params['data']['sr'])
|
136 |
-
num_samples = 10 * sr
|
137 |
-
if len(gt) < num_samples:
|
138 |
-
padding = num_samples - len(gt)
|
139 |
-
gt = np.pad(gt, (0, padding), 'constant')
|
140 |
-
else:
|
141 |
-
gt = gt[:num_samples]
|
142 |
-
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
|
143 |
-
gt = autoencoder(audio=gt)
|
144 |
-
B, D, L = gt.shape
|
145 |
-
mask_len = int(L * 0.2)
|
146 |
-
gt_mask = torch.zeros(B, D, L).to(device)
|
147 |
-
for _ in range(2):
|
148 |
-
start = random.randint(0, L - mask_len)
|
149 |
-
gt_mask[:, :, start:start + mask_len] = 1
|
150 |
-
gt_mask = gt_mask.bool()
|
151 |
-
else:
|
152 |
-
gt = None
|
153 |
-
gt_mask = None
|
154 |
-
|
155 |
-
pred = inference(autoencoder, unet, gt, gt_mask,
|
156 |
-
tokenizer, text_encoder,
|
157 |
-
params, noise_scheduler,
|
158 |
-
text, neg_text=None,
|
159 |
-
audio_frames=audio_frames,
|
160 |
-
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale,
|
161 |
-
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed,
|
162 |
-
device=device)
|
163 |
-
|
164 |
-
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
|
165 |
-
|
166 |
-
sf.write(save_path + text[0] + '.wav', pred, samplerate=params['data']['sr'])
|
167 |
-
|
168 |
-
if i + 1 >= val_num:
|
169 |
-
break
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
import librosa
|
6 |
+
import numpy as np
|
7 |
+
import soundfile as sf
|
8 |
+
from tqdm import tqdm
|
9 |
+
from .utils import scale_shift_re
|
10 |
+
|
11 |
+
|
12 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
13 |
+
"""
|
14 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
15 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
16 |
+
"""
|
17 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
18 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
19 |
+
# rescale the results from guidance (fixes overexposure)
|
20 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
21 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
22 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
23 |
+
return noise_cfg
|
24 |
+
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def inference(autoencoder, unet, gt, gt_mask,
|
28 |
+
tokenizer, text_encoder,
|
29 |
+
params, noise_scheduler,
|
30 |
+
text_raw, neg_text=None,
|
31 |
+
audio_frames=500,
|
32 |
+
guidance_scale=3, guidance_rescale=0.0,
|
33 |
+
ddim_steps=50, eta=1, random_seed=2024,
|
34 |
+
device='cuda',
|
35 |
+
):
|
36 |
+
if neg_text is None:
|
37 |
+
neg_text = [""]
|
38 |
+
if tokenizer is not None:
|
39 |
+
text_batch = tokenizer(text_raw,
|
40 |
+
max_length=params['text_encoder']['max_length'],
|
41 |
+
padding="max_length", truncation=True, return_tensors="pt")
|
42 |
+
text, text_mask = text_batch.input_ids.to(device), text_batch.attention_mask.to(device).bool()
|
43 |
+
text = text_encoder(input_ids=text, attention_mask=text_mask).last_hidden_state
|
44 |
+
|
45 |
+
uncond_text_batch = tokenizer(neg_text,
|
46 |
+
max_length=params['text_encoder']['max_length'],
|
47 |
+
padding="max_length", truncation=True, return_tensors="pt")
|
48 |
+
uncond_text, uncond_text_mask = uncond_text_batch.input_ids.to(device), uncond_text_batch.attention_mask.to(device).bool()
|
49 |
+
uncond_text = text_encoder(input_ids=uncond_text,
|
50 |
+
attention_mask=uncond_text_mask).last_hidden_state
|
51 |
+
else:
|
52 |
+
text, text_mask = None, None
|
53 |
+
guidance_scale = None
|
54 |
+
|
55 |
+
codec_dim = params['model']['out_chans']
|
56 |
+
unet.eval()
|
57 |
+
|
58 |
+
if random_seed is not None:
|
59 |
+
generator = torch.Generator(device=device).manual_seed(random_seed)
|
60 |
+
else:
|
61 |
+
generator = torch.Generator(device=device)
|
62 |
+
generator.seed()
|
63 |
+
|
64 |
+
noise_scheduler.set_timesteps(ddim_steps)
|
65 |
+
|
66 |
+
# init noise
|
67 |
+
noise = torch.randn((1, codec_dim, audio_frames), generator=generator, device=device)
|
68 |
+
latents = noise
|
69 |
+
|
70 |
+
for t in noise_scheduler.timesteps:
|
71 |
+
latents = noise_scheduler.scale_model_input(latents, t)
|
72 |
+
|
73 |
+
if guidance_scale:
|
74 |
+
|
75 |
+
latents_combined = torch.cat([latents, latents], dim=0)
|
76 |
+
text_combined = torch.cat([text, uncond_text], dim=0)
|
77 |
+
text_mask_combined = torch.cat([text_mask, uncond_text_mask], dim=0)
|
78 |
+
|
79 |
+
if gt is not None:
|
80 |
+
gt_combined = torch.cat([gt, gt], dim=0)
|
81 |
+
gt_mask_combined = torch.cat([gt_mask, gt_mask], dim=0)
|
82 |
+
else:
|
83 |
+
gt_combined = None
|
84 |
+
gt_mask_combined = None
|
85 |
+
|
86 |
+
output_combined, _ = unet(latents_combined, t, text_combined, context_mask=text_mask_combined,
|
87 |
+
cls_token=None, gt=gt_combined, mae_mask_infer=gt_mask_combined)
|
88 |
+
output_text, output_uncond = torch.chunk(output_combined, 2, dim=0)
|
89 |
+
|
90 |
+
output_pred = output_uncond + guidance_scale * (output_text - output_uncond)
|
91 |
+
if guidance_rescale > 0.0:
|
92 |
+
output_pred = rescale_noise_cfg(output_pred, output_text,
|
93 |
+
guidance_rescale=guidance_rescale)
|
94 |
+
else:
|
95 |
+
output_pred, mae_mask = unet(latents, t, text, context_mask=text_mask,
|
96 |
+
cls_token=None, gt=gt, mae_mask_infer=gt_mask)
|
97 |
+
|
98 |
+
latents = noise_scheduler.step(model_output=output_pred, timestep=t,
|
99 |
+
sample=latents,
|
100 |
+
eta=eta, generator=generator).prev_sample
|
101 |
+
|
102 |
+
pred = scale_shift_re(latents, params['autoencoder']['scale'],
|
103 |
+
params['autoencoder']['shift'])
|
104 |
+
if gt is not None:
|
105 |
+
pred[~gt_mask] = gt[~gt_mask]
|
106 |
+
pred_wav = autoencoder(embedding=pred)
|
107 |
+
return pred_wav
|
108 |
+
|
109 |
+
|
110 |
+
@torch.no_grad()
|
111 |
+
def eval_udit(autoencoder, unet,
|
112 |
+
tokenizer, text_encoder,
|
113 |
+
params, noise_scheduler,
|
114 |
+
val_df, subset,
|
115 |
+
audio_frames, mae=False,
|
116 |
+
guidance_scale=3, guidance_rescale=0.0,
|
117 |
+
ddim_steps=50, eta=1, random_seed=2023,
|
118 |
+
device='cuda',
|
119 |
+
epoch=0, save_path='logs/eval/', val_num=5):
|
120 |
+
val_df = pd.read_csv(val_df)
|
121 |
+
val_df = val_df[val_df['split'] == subset]
|
122 |
+
if mae:
|
123 |
+
val_df = val_df[val_df['audio_length'] != 0]
|
124 |
+
|
125 |
+
save_path = save_path + str(epoch) + '/'
|
126 |
+
os.makedirs(save_path, exist_ok=True)
|
127 |
+
|
128 |
+
for i in tqdm(range(len(val_df))):
|
129 |
+
row = val_df.iloc[i]
|
130 |
+
text = [row['caption']]
|
131 |
+
if mae:
|
132 |
+
audio_path = params['data']['val_dir'] + str(row['audio_path'])
|
133 |
+
gt, sr = librosa.load(audio_path, sr=params['data']['sr'])
|
134 |
+
gt = gt / (np.max(np.abs(gt)) + 1e-9)
|
135 |
+
sf.write(save_path + text[0] + '_gt.wav', gt, samplerate=params['data']['sr'])
|
136 |
+
num_samples = 10 * sr
|
137 |
+
if len(gt) < num_samples:
|
138 |
+
padding = num_samples - len(gt)
|
139 |
+
gt = np.pad(gt, (0, padding), 'constant')
|
140 |
+
else:
|
141 |
+
gt = gt[:num_samples]
|
142 |
+
gt = torch.tensor(gt).unsqueeze(0).unsqueeze(1).to(device)
|
143 |
+
gt = autoencoder(audio=gt)
|
144 |
+
B, D, L = gt.shape
|
145 |
+
mask_len = int(L * 0.2)
|
146 |
+
gt_mask = torch.zeros(B, D, L).to(device)
|
147 |
+
for _ in range(2):
|
148 |
+
start = random.randint(0, L - mask_len)
|
149 |
+
gt_mask[:, :, start:start + mask_len] = 1
|
150 |
+
gt_mask = gt_mask.bool()
|
151 |
+
else:
|
152 |
+
gt = None
|
153 |
+
gt_mask = None
|
154 |
+
|
155 |
+
pred = inference(autoencoder, unet, gt, gt_mask,
|
156 |
+
tokenizer, text_encoder,
|
157 |
+
params, noise_scheduler,
|
158 |
+
text, neg_text=None,
|
159 |
+
audio_frames=audio_frames,
|
160 |
+
guidance_scale=guidance_scale, guidance_rescale=guidance_rescale,
|
161 |
+
ddim_steps=ddim_steps, eta=eta, random_seed=random_seed,
|
162 |
+
device=device)
|
163 |
+
|
164 |
+
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
|
165 |
+
|
166 |
+
sf.write(save_path + text[0] + '.wav', pred, samplerate=params['data']['sr'])
|
167 |
+
|
168 |
+
if i + 1 >= val_num:
|
169 |
+
break
|