Spaces:
Running
on
Zero
Running
on
Zero
Update api.py
Browse files
api.py
CHANGED
@@ -1,117 +1,117 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import random
|
4 |
-
import
|
5 |
-
import
|
6 |
-
import
|
7 |
-
|
8 |
-
from
|
9 |
-
from
|
10 |
-
from src.
|
11 |
-
from src.
|
12 |
-
from src.
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
text_encoder.
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
unet
|
33 |
-
unet.
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
def generate_audio(text, length,
|
62 |
-
guidance_scale, guidance_rescale, ddim_steps, eta,
|
63 |
-
random_seed, randomize_seed):
|
64 |
-
neg_text = None
|
65 |
-
length = length * params['autoencoder']['latent_sr']
|
66 |
-
|
67 |
-
if randomize_seed:
|
68 |
-
random_seed = random.randint(0, MAX_SEED)
|
69 |
-
|
70 |
-
pred = inference(autoencoder, unet, None, None,
|
71 |
-
tokenizer, text_encoder,
|
72 |
-
params, noise_scheduler,
|
73 |
-
text, neg_text,
|
74 |
-
length,
|
75 |
-
guidance_scale, guidance_rescale,
|
76 |
-
ddim_steps, eta, random_seed,
|
77 |
-
device)
|
78 |
-
|
79 |
-
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
|
80 |
-
# output_file = f"{save_path}/{text}.wav"
|
81 |
-
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])
|
82 |
-
|
83 |
-
return params['autoencoder']['sr'], pred
|
84 |
-
|
85 |
-
|
86 |
-
# Gradio Interface
|
87 |
-
def gradio_interface():
|
88 |
-
# Input components
|
89 |
-
text_input = gr.Textbox(label="Text Prompt", value="the sound of dog barking")
|
90 |
-
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
|
91 |
-
|
92 |
-
# Advanced settings
|
93 |
-
guidance_scale_input = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5, label="Guidance Scale")
|
94 |
-
guidance_rescale_input = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
|
95 |
-
ddim_steps_input = gr.Slider(minimum=25, maximum=200, step=5, value=100, label="DDIM Steps")
|
96 |
-
eta_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Eta")
|
97 |
-
random_seed_input = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0,)
|
98 |
-
|
99 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
100 |
-
|
101 |
-
# Output component
|
102 |
-
output_audio = gr.Audio(label="Converted Audio", type="numpy")
|
103 |
-
|
104 |
-
# Interface
|
105 |
-
gr.Interface(
|
106 |
-
fn=generate_audio,
|
107 |
-
inputs=[text_input, length_input, guidance_scale_input, guidance_rescale_input, ddim_steps_input, eta_input,
|
108 |
-
random_seed_input, randomize_seed],
|
109 |
-
outputs=output_audio,
|
110 |
-
title="EzAudio Text-to-Audio Generator",
|
111 |
-
description="Generate audio from text using a diffusion model. Adjust advanced settings for more control.",
|
112 |
-
allow_flagging="never"
|
113 |
-
).launch()
|
114 |
-
|
115 |
-
|
116 |
-
if __name__ == "__main__":
|
117 |
-
gradio_interface()
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import random
|
4 |
+
import spaces
|
5 |
+
import numpy as np
|
6 |
+
import gradio as gr
|
7 |
+
import soundfile as sf
|
8 |
+
from transformers import T5Tokenizer, T5EncoderModel
|
9 |
+
from diffusers import DDIMScheduler
|
10 |
+
from src.models.conditioners import MaskDiT
|
11 |
+
from src.modules.autoencoder_wrapper import Autoencoder
|
12 |
+
from src.inference import inference
|
13 |
+
from src.utils import load_yaml_with_includes
|
14 |
+
|
15 |
+
|
16 |
+
# Load model and configs
|
17 |
+
def load_models(config_name, ckpt_path, vae_path, device):
|
18 |
+
params = load_yaml_with_includes(config_name)
|
19 |
+
|
20 |
+
# Load codec model
|
21 |
+
autoencoder = Autoencoder(ckpt_path=vae_path,
|
22 |
+
model_type=params['autoencoder']['name'],
|
23 |
+
quantization_first=params['autoencoder']['q_first']).to(device)
|
24 |
+
autoencoder.eval()
|
25 |
+
|
26 |
+
# Load text encoder
|
27 |
+
tokenizer = T5Tokenizer.from_pretrained(params['text_encoder']['model'])
|
28 |
+
text_encoder = T5EncoderModel.from_pretrained(params['text_encoder']['model']).to(device)
|
29 |
+
text_encoder.eval()
|
30 |
+
|
31 |
+
# Load main U-Net model
|
32 |
+
unet = MaskDiT(**params['model']).to(device)
|
33 |
+
unet.load_state_dict(torch.load(ckpt_path)['model'])
|
34 |
+
unet.eval()
|
35 |
+
|
36 |
+
# Load noise scheduler
|
37 |
+
noise_scheduler = DDIMScheduler(**params['diff'])
|
38 |
+
|
39 |
+
latents = torch.randn((1, 128, 128), device=device)
|
40 |
+
noise = torch.randn_like(latents)
|
41 |
+
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (1,), device=device)
|
42 |
+
_ = noise_scheduler.add_noise(latents, noise, timesteps)
|
43 |
+
|
44 |
+
return autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params
|
45 |
+
|
46 |
+
MAX_SEED = np.iinfo(np.int32).max
|
47 |
+
|
48 |
+
# Model and config paths
|
49 |
+
config_name = 'ckpts/ezaudio-xl.yml'
|
50 |
+
ckpt_path = 'ckpts/s3/ezaudio_s3_xl.pt'
|
51 |
+
vae_path = 'ckpts/vae/1m.pt'
|
52 |
+
save_path = 'output/'
|
53 |
+
os.makedirs(save_path, exist_ok=True)
|
54 |
+
|
55 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
56 |
+
|
57 |
+
autoencoder, unet, tokenizer, text_encoder, noise_scheduler, params = load_models(config_name, ckpt_path, vae_path,
|
58 |
+
device)
|
59 |
+
|
60 |
+
@spaces.GPU
|
61 |
+
def generate_audio(text, length,
|
62 |
+
guidance_scale, guidance_rescale, ddim_steps, eta,
|
63 |
+
random_seed, randomize_seed):
|
64 |
+
neg_text = None
|
65 |
+
length = length * params['autoencoder']['latent_sr']
|
66 |
+
|
67 |
+
if randomize_seed:
|
68 |
+
random_seed = random.randint(0, MAX_SEED)
|
69 |
+
|
70 |
+
pred = inference(autoencoder, unet, None, None,
|
71 |
+
tokenizer, text_encoder,
|
72 |
+
params, noise_scheduler,
|
73 |
+
text, neg_text,
|
74 |
+
length,
|
75 |
+
guidance_scale, guidance_rescale,
|
76 |
+
ddim_steps, eta, random_seed,
|
77 |
+
device)
|
78 |
+
|
79 |
+
pred = pred.cpu().numpy().squeeze(0).squeeze(0)
|
80 |
+
# output_file = f"{save_path}/{text}.wav"
|
81 |
+
# sf.write(output_file, pred, samplerate=params['autoencoder']['sr'])
|
82 |
+
|
83 |
+
return params['autoencoder']['sr'], pred
|
84 |
+
|
85 |
+
|
86 |
+
# Gradio Interface
|
87 |
+
def gradio_interface():
|
88 |
+
# Input components
|
89 |
+
text_input = gr.Textbox(label="Text Prompt", value="the sound of dog barking")
|
90 |
+
length_input = gr.Slider(minimum=1, maximum=10, step=1, value=10, label="Audio Length (in seconds)")
|
91 |
+
|
92 |
+
# Advanced settings
|
93 |
+
guidance_scale_input = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=5, label="Guidance Scale")
|
94 |
+
guidance_rescale_input = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0.75, label="Guidance Rescale")
|
95 |
+
ddim_steps_input = gr.Slider(minimum=25, maximum=200, step=5, value=100, label="DDIM Steps")
|
96 |
+
eta_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Eta")
|
97 |
+
random_seed_input = gr.Slider(minimum=0, maximum=MAX_SEED, step=1, value=0,)
|
98 |
+
|
99 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
100 |
+
|
101 |
+
# Output component
|
102 |
+
output_audio = gr.Audio(label="Converted Audio", type="numpy")
|
103 |
+
|
104 |
+
# Interface
|
105 |
+
gr.Interface(
|
106 |
+
fn=generate_audio,
|
107 |
+
inputs=[text_input, length_input, guidance_scale_input, guidance_rescale_input, ddim_steps_input, eta_input,
|
108 |
+
random_seed_input, randomize_seed],
|
109 |
+
outputs=output_audio,
|
110 |
+
title="EzAudio Text-to-Audio Generator",
|
111 |
+
description="Generate audio from text using a diffusion model. Adjust advanced settings for more control.",
|
112 |
+
allow_flagging="never"
|
113 |
+
).launch()
|
114 |
+
|
115 |
+
|
116 |
+
if __name__ == "__main__":
|
117 |
+
gradio_interface()
|