import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint from torch.cuda.amp import autocast import math import einops from einops import rearrange, repeat from inspect import isfunction from .timm import trunc_normal_ # disable in checkpoint mode # @torch.jit.script def film_modulate(x, shift, scale): return x * (1 + scale) + shift def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256, out_size=None): super().__init__() if out_size is None: out_size = hidden_size self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, out_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size def forward(self, t): t_freq = timestep_embedding(t, self.frequency_embedding_size).type( self.mlp[0].weight.dtype) t_emb = self.mlp(t_freq) return t_emb def patchify(imgs, patch_size, input_type='2d'): if input_type == '2d': x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) elif input_type == '1d': x = einops.rearrange(imgs, 'B C (h p1) -> B h (p1 C)', p1=patch_size) return x def unpatchify(x, channels=3, input_type='2d', img_size=None): if input_type == '2d': patch_size = int((x.shape[2] // channels) ** 0.5) # h = w = int(x.shape[1] ** .5) h, w = img_size[0] // patch_size, img_size[1] // patch_size assert h * w == x.shape[1] and patch_size ** 2 * channels == x.shape[2] x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size) elif input_type == '1d': patch_size = int((x.shape[2] // channels)) h = x.shape[1] assert patch_size * channels == x.shape[2] x = einops.rearrange(x, 'B h (p1 C) -> B C (h p1)', h=h, p1=patch_size) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, patch_size, in_chans=3, embed_dim=768, input_type='2d'): super().__init__() self.patch_size = patch_size self.input_type = input_type if input_type == '2d': self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True) elif input_type == '1d': self.proj = nn.Conv1d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size, bias=True) def forward(self, x): if self.input_type == '2d': B, C, H, W = x.shape assert H % self.patch_size == 0 and W % self.patch_size == 0 elif self.input_type == '1d': B, C, H = x.shape assert H % self.patch_size == 0 x = self.proj(x).flatten(2).transpose(1, 2) return x class PositionalConvEmbedding(nn.Module): """ Relative positional embedding used in HuBERT """ def __init__(self, dim=768, kernel_size=128, groups=16): super().__init__() self.conv = nn.Conv1d( dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=groups, bias=True ) self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2) def forward(self, x): # B C T x = self.conv(x) x = F.gelu(x[:, :, :-1]) return x class SinusoidalPositionalEncoding(nn.Module): def __init__(self, dim, length): super(SinusoidalPositionalEncoding, self).__init__() self.length = length self.dim = dim self.register_buffer('pe', self._generate_positional_encoding(length, dim)) def _generate_positional_encoding(self, length, dim): pe = torch.zeros(length, dim) position = torch.arange(0, length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) return pe def forward(self, x): x = x + self.pe[:, :x.size(1)] return x class PE_wrapper(nn.Module): def __init__(self, dim=768, method='abs', length=None, **kwargs): super().__init__() self.method = method if method == 'abs': # init absolute pe like UViT self.length = length self.abs_pe = nn.Parameter(torch.zeros(1, length, dim)) trunc_normal_(self.abs_pe, std=.02) elif method == 'conv': self.conv_pe = PositionalConvEmbedding(dim=dim, **kwargs) elif method == 'sinu': self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length) elif method == 'none': # skip pe self.id = nn.Identity() else: raise NotImplementedError def forward(self, x): if self.method == 'abs': _, L, _ = x.shape assert L <= self.length x = x + self.abs_pe[:, :L, :] elif self.method == 'conv': x = x + self.conv_pe(x) elif self.method == 'sinu': x = self.sinu_pe(x) elif self.method == 'none': x = self.id(x) else: raise NotImplementedError return x class RMSNorm(torch.nn.Module): def __init__(self, dim: int, eps: float = 1e-6): """ Initialize the RMSNorm normalization layer. Args: dim (int): The dimension of the input tensor. eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. Attributes: eps (float): A small value added to the denominator for numerical stability. weight (nn.Parameter): Learnable scaling parameter. """ super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): """ Apply the RMSNorm normalization to the input tensor. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The normalized tensor. """ return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): """ Forward pass through the RMSNorm layer. Args: x (torch.Tensor): The input tensor. Returns: torch.Tensor: The output tensor after applying RMSNorm. """ output = self._norm(x.float()).type_as(x) return output * self.weight class GELU(nn.Module): def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) self.approximate = approximate def gelu(self, gate: torch.Tensor) -> torch.Tensor: if gate.device.type != "mps": return F.gelu(gate, approximate=self.approximate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32), approximate=self.approximate).to(dtype=gate.dtype) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states = self.gelu(hidden_states) return hidden_states class GEGLU(nn.Module): def __init__(self, dim_in: int, dim_out: int, bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) def gelu(self, gate: torch.Tensor) -> torch.Tensor: if gate.device.type != "mps": return F.gelu(gate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) def forward(self, hidden_states): hidden_states = self.proj(hidden_states) hidden_states, gate = hidden_states.chunk(2, dim=-1) return hidden_states * self.gelu(gate) class ApproximateGELU(nn.Module): def __init__(self, dim_in: int, dim_out: int, bias: bool = True): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.proj(x) return x * torch.sigmoid(1.702 * x) # disable in checkpoint mode # @torch.jit.script def snake_beta(x, alpha, beta): return x + beta * torch.sin(x * alpha).pow(2) class Snake(nn.Module): def __init__(self, dim_in, dim_out, bias, alpha_trainable=True): super().__init__() self.proj = nn.Linear(dim_in, dim_out, bias=bias) self.alpha = nn.Parameter(torch.ones(1, 1, dim_out)) self.beta = nn.Parameter(torch.ones(1, 1, dim_out)) self.alpha.requires_grad = alpha_trainable self.beta.requires_grad = alpha_trainable def forward(self, x): x = self.proj(x) x = snake_beta(x, self.alpha, self.beta) return x class GESnake(nn.Module): def __init__(self, dim_in, dim_out, bias, alpha_trainable=True): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) self.alpha = nn.Parameter(torch.ones(1, 1, dim_out)) self.beta = nn.Parameter(torch.ones(1, 1, dim_out)) self.alpha.requires_grad = alpha_trainable self.beta.requires_grad = alpha_trainable def forward(self, x): x = self.proj(x) x, gate = x.chunk(2, dim=-1) return x * snake_beta(gate, self.alpha, self.beta) class FeedForward(nn.Module): def __init__( self, dim, dim_out=None, mult=4, dropout=0.0, activation_fn="geglu", final_dropout=False, inner_dim=None, bias=True, ): super().__init__() if inner_dim is None: inner_dim = int(dim * mult) dim_out = dim_out if dim_out is not None else dim if activation_fn == "gelu": act_fn = GELU(dim, inner_dim, bias=bias) elif activation_fn == "gelu-approximate": act_fn = GELU(dim, inner_dim, approximate="tanh", bias=bias) elif activation_fn == "geglu": act_fn = GEGLU(dim, inner_dim, bias=bias) elif activation_fn == "geglu-approximate": act_fn = ApproximateGELU(dim, inner_dim, bias=bias) elif activation_fn == "snake": act_fn = Snake(dim, inner_dim, bias=bias) elif activation_fn == "gesnake": act_fn = GESnake(dim, inner_dim, bias=bias) else: raise NotImplementedError self.net = nn.ModuleList([]) # project in self.net.append(act_fn) # project dropout self.net.append(nn.Dropout(dropout)) # project out self.net.append(nn.Linear(inner_dim, dim_out, bias=bias)) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(dropout)) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: for module in self.net: hidden_states = module(hidden_states) return hidden_states