import torch import torch.nn as nn import torch.nn.functional as F from audiotools import AudioSignal from audiotools import ml from audiotools import STFTParams from einops import rearrange from torch.nn.utils import weight_norm def WNConv1d(*args, **kwargs): act = kwargs.pop("act", True) conv = weight_norm(nn.Conv1d(*args, **kwargs)) if not act: return conv return nn.Sequential(conv, nn.LeakyReLU(0.1)) def WNConv2d(*args, **kwargs): act = kwargs.pop("act", True) conv = weight_norm(nn.Conv2d(*args, **kwargs)) if not act: return conv return nn.Sequential(conv, nn.LeakyReLU(0.1)) class MPD(nn.Module): def __init__(self, period): super().__init__() self.period = period self.convs = nn.ModuleList( [ WNConv2d(1, 32, (5, 1), (3, 1), padding=(2, 0)), WNConv2d(32, 128, (5, 1), (3, 1), padding=(2, 0)), WNConv2d(128, 512, (5, 1), (3, 1), padding=(2, 0)), WNConv2d(512, 1024, (5, 1), (3, 1), padding=(2, 0)), WNConv2d(1024, 1024, (5, 1), 1, padding=(2, 0)), ] ) self.conv_post = WNConv2d( 1024, 1, kernel_size=(3, 1), padding=(1, 0), act=False ) def pad_to_period(self, x): t = x.shape[-1] x = F.pad(x, (0, self.period - t % self.period), mode="reflect") return x def forward(self, x): fmap = [] x = self.pad_to_period(x) x = rearrange(x, "b c (l p) -> b c l p", p=self.period) for layer in self.convs: x = layer(x) fmap.append(x) x = self.conv_post(x) fmap.append(x) return fmap class MSD(nn.Module): def __init__(self, rate: int = 1, sample_rate: int = 44100): super().__init__() self.convs = nn.ModuleList( [ WNConv1d(1, 16, 15, 1, padding=7), WNConv1d(16, 64, 41, 4, groups=4, padding=20), WNConv1d(64, 256, 41, 4, groups=16, padding=20), WNConv1d(256, 1024, 41, 4, groups=64, padding=20), WNConv1d(1024, 1024, 41, 4, groups=256, padding=20), WNConv1d(1024, 1024, 5, 1, padding=2), ] ) self.conv_post = WNConv1d(1024, 1, 3, 1, padding=1, act=False) self.sample_rate = sample_rate self.rate = rate def forward(self, x): x = AudioSignal(x, self.sample_rate) x.resample(self.sample_rate // self.rate) x = x.audio_data fmap = [] for l in self.convs: x = l(x) fmap.append(x) x = self.conv_post(x) fmap.append(x) return fmap BANDS = [(0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)] class MRD(nn.Module): def __init__( self, window_length: int, hop_factor: float = 0.25, sample_rate: int = 44100, bands: list = BANDS, ): """Complex multi-band spectrogram discriminator. Parameters ---------- window_length : int Window length of STFT. hop_factor : float, optional Hop factor of the STFT, defaults to ``0.25 * window_length``. sample_rate : int, optional Sampling rate of audio in Hz, by default 44100 bands : list, optional Bands to run discriminator over. """ super().__init__() self.window_length = window_length self.hop_factor = hop_factor self.sample_rate = sample_rate self.stft_params = STFTParams( window_length=window_length, hop_length=int(window_length * hop_factor), match_stride=True, ) n_fft = window_length // 2 + 1 bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] self.bands = bands ch = 32 convs = lambda: nn.ModuleList( [ WNConv2d(2, ch, (3, 9), (1, 1), padding=(1, 4)), WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), WNConv2d(ch, ch, (3, 9), (1, 2), padding=(1, 4)), WNConv2d(ch, ch, (3, 3), (1, 1), padding=(1, 1)), ] ) self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) self.conv_post = WNConv2d(ch, 1, (3, 3), (1, 1), padding=(1, 1), act=False) def spectrogram(self, x): x = AudioSignal(x, self.sample_rate, stft_params=self.stft_params) x = torch.view_as_real(x.stft()) x = rearrange(x, "b 1 f t c -> (b 1) c t f") # Split into bands x_bands = [x[..., b[0] : b[1]] for b in self.bands] return x_bands def forward(self, x): x_bands = self.spectrogram(x) fmap = [] x = [] for band, stack in zip(x_bands, self.band_convs): for layer in stack: band = layer(band) fmap.append(band) x.append(band) x = torch.cat(x, dim=-1) x = self.conv_post(x) fmap.append(x) return fmap class Discriminator(ml.BaseModel): def __init__( self, rates: list = [], periods: list = [2, 3, 5, 7, 11], fft_sizes: list = [2048, 1024, 512], sample_rate: int = 44100, bands: list = BANDS, ): """Discriminator that combines multiple discriminators. Parameters ---------- rates : list, optional sampling rates (in Hz) to run MSD at, by default [] If empty, MSD is not used. periods : list, optional periods (of samples) to run MPD at, by default [2, 3, 5, 7, 11] fft_sizes : list, optional Window sizes of the FFT to run MRD at, by default [2048, 1024, 512] sample_rate : int, optional Sampling rate of audio in Hz, by default 44100 bands : list, optional Bands to run MRD at, by default `BANDS` """ super().__init__() discs = [] discs += [MPD(p) for p in periods] discs += [MSD(r, sample_rate=sample_rate) for r in rates] discs += [MRD(f, sample_rate=sample_rate, bands=bands) for f in fft_sizes] self.discriminators = nn.ModuleList(discs) def preprocess(self, y): # Remove DC offset y = y - y.mean(dim=-1, keepdims=True) # Peak normalize the volume of input audio y = 0.8 * y / (y.abs().max(dim=-1, keepdim=True)[0] + 1e-9) return y def forward(self, x): x = self.preprocess(x) fmaps = [d(x) for d in self.discriminators] return fmaps if __name__ == "__main__": disc = Discriminator() x = torch.zeros(1, 1, 44100) results = disc(x) for i, result in enumerate(results): print(f"disc{i}") for i, r in enumerate(result): print(r.shape, r.mean(), r.min(), r.max()) print()