File size: 6,502 Bytes
d4c980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
"""
Abstract SDE classes, Reverse SDE, and VE/VP SDEs.

Taken and adapted from https://github.com/yang-song/score_sde_pytorch/blob/1618ddea340f3e4a2ed7852a0694a809775cf8d0/sde_lib.py
"""
import abc
import warnings
import math
import scipy.special as sc
import numpy as np
from geco.util.tensors import batch_broadcast
import torch

from geco.util.registry import Registry


SDERegistry = Registry("SDE")


class SDE(abc.ABC):
    """SDE abstract class. Functions are designed for a mini-batch of inputs."""

    def __init__(self, N):
        """Construct an SDE.

        Args:
            N: number of discretization time steps.
        """
        super().__init__()
        self.N = N

    @property
    @abc.abstractmethod
    def T(self):
        """End time of the SDE."""
        pass

    @abc.abstractmethod
    def sde(self, x, t, *args):
        pass

    @abc.abstractmethod
    def marginal_prob(self, x, t, *args):
        """Parameters to determine the marginal distribution of the SDE, $p_t(x|args)$."""
        pass

    @abc.abstractmethod
    def prior_sampling(self, shape, *args):
        """Generate one sample from the prior distribution, $p_T(x|args)$ with shape `shape`."""
        pass

    @abc.abstractmethod
    def prior_logp(self, z):
        """Compute log-density of the prior distribution.

        Useful for computing the log-likelihood via probability flow ODE.

        Args:
            z: latent code
        Returns:
            log probability density
        """
        pass

    @staticmethod
    @abc.abstractmethod
    def add_argparse_args(parent_parser):
        """
        Add the necessary arguments for instantiation of this SDE class to an argparse ArgumentParser.
        """
        pass

    def discretize(self, x, t, y, stepsize):
        """Discretize the SDE in the form: x_{i+1} = x_i + f_i(x_i) + G_i z_i.

        Useful for reverse diffusion sampling and probabiliy flow sampling.
        Defaults to Euler-Maruyama discretization.

        Args:
            x: a torch tensor
            t: a torch float representing the time step (from 0 to `self.T`)

        Returns:
            f, G
        """
        dt = stepsize
        #dt = 1 /self.N
        drift, diffusion = self.sde(x, t, y)
        f = drift * dt
        G = diffusion * torch.sqrt(torch.tensor(dt, device=t.device))
        return f, G

    def reverse(oself, score_model, probability_flow=False):
        """Create the reverse-time SDE/ODE.

        Args:
            score_model: A function that takes x, t and y and returns the score.
            probability_flow: If `True`, create the reverse-time ODE used for probability flow sampling.
        """
        N = oself.N
        T = oself.T
        sde_fn = oself.sde
        discretize_fn = oself.discretize

        # Build the class for reverse-time SDE.
        class RSDE(oself.__class__):
            def __init__(self):
                self.N = N
                self.probability_flow = probability_flow

            @property
            def T(self):
                return T

            def sde(self, x, t, *args):
                """Create the drift and diffusion functions for the reverse SDE/ODE."""
                rsde_parts = self.rsde_parts(x, t, *args)
                total_drift, diffusion = rsde_parts["total_drift"], rsde_parts["diffusion"]
                return total_drift, diffusion

            def discretize(self, x, t, y, m, stepsize):
                """Create discretized iteration rules for the reverse diffusion sampler."""
                f, G = discretize_fn(x, t, y, stepsize)
                if torch.is_complex(G):
                    G = G.imag
                rev_f = f - G[:, None, None, None] ** 2 * score_model(x, t, y, m) * (0.5 if self.probability_flow else 1.)
                rev_G = torch.zeros_like(G) if self.probability_flow else G
                return rev_f, rev_G

        return RSDE()

    @abc.abstractmethod
    def copy(self):
        pass


@SDERegistry.register("bbed")
class BBED(SDE):
    @staticmethod
    def add_argparse_args(parser):
        parser.add_argument("--sde-n", type=int, default=30, help="The number of timesteps in the SDE discretization. 30 by default")
        parser.add_argument("--T_sampling", type=float, default=0.999, help="The T so that t < T during sampling in the train step.")
        parser.add_argument("--k", type=float, default = 2.6, help="base factor for diffusion term") 
        parser.add_argument("--theta", type=float, default = 0.52, help="root scale factor for diffusion term.")
        return parser

    def __init__(self, T_sampling, k, theta, N=1000, **kwargs):
        """Construct an Brownian Bridge with Exploding Diffusion Coefficient SDE with parameterization as in the paper.
        dx = (y-x)/(Tc-t) dt + sqrt(theta)*k^t dw
        """
        super().__init__(N)
        self.k = k
        self.logk = np.log(self.k)
        self.theta = theta
        self.N = N
        self.Eilog = sc.expi(-2*self.logk)
        self.T = T_sampling #for sampling in train step and inference
        self.Tc = 1 #for constructing the SDE, dont change this


    def copy(self):
        return BBED(self.T, self.k, self.theta, N=self.N)


    def T(self):
        return self.T
    
    def Tc(self):
        return self.Tc


    def sde(self, x, t, y):
        drift = (y - x)/(self.Tc - t)
        sigma = (self.k) ** t
        diffusion = sigma * np.sqrt(self.theta)
        return drift, diffusion


    def _mean(self, x0, t, y):
        time = (t/self.Tc)[:, None, None, None]
        mean = x0*(1-time) + y*time
        return mean

    def _std(self, t):
        t_np = t.cpu().detach().numpy()
        Eis = sc.expi(2*(t_np-1)*self.logk) - self.Eilog
        h = 2*self.k**2*self.logk
        var = (self.k**(2*t_np)-1+t_np) + h*(1-t_np)*Eis
        var = torch.tensor(var).to(device=t.device)*(1-t)*self.theta
        return torch.sqrt(var)

    def marginal_prob(self, x0, t, y):
        return self._mean(x0, t, y), self._std(t)

    def prior_sampling(self, shape, y):
        if shape != y.shape:
            warnings.warn(f"Target shape {shape} does not match shape of y {y.shape}! Ignoring target shape.")
        std = self._std(self.T*torch.ones((y.shape[0],), device=y.device))
        z = torch.randn_like(y)
        x_T = y + z * std[:, None, None, None]
        return x_T, z

    def prior_logp(self, z):
        raise NotImplementedError("prior_logp for BBED not yet implemented!")