|
"""Various sampling methods.""" |
|
from scipy import integrate |
|
import torch |
|
|
|
from .predictors import Predictor, PredictorRegistry, ReverseDiffusionPredictor |
|
from .correctors import Corrector, CorrectorRegistry |
|
import numpy as np |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
__all__ = [ |
|
'PredictorRegistry', 'CorrectorRegistry', 'Predictor', 'Corrector', |
|
'get_sampler' |
|
] |
|
|
|
|
|
def to_flattened_numpy(x): |
|
"""Flatten a torch tensor `x` and convert it to numpy.""" |
|
return x.detach().cpu().numpy().reshape((-1,)) |
|
|
|
|
|
def from_flattened_numpy(x, shape): |
|
"""Form a torch tensor with the given `shape` from a flattened numpy array `x`.""" |
|
return torch.from_numpy(x.reshape(shape)) |
|
|
|
|
|
def get_pc_sampler( |
|
predictor_name, corrector_name, sde, score_fn, Y, M, Y_prior=None, |
|
denoise=True, eps=3e-2, snr=0.1, corrector_steps=1, probability_flow: bool = False, |
|
intermediate=False, timestep_type=None, **kwargs |
|
): |
|
"""Create a Predictor-Corrector (PC) sampler. |
|
|
|
Args: |
|
predictor_name: The name of a registered `sampling.Predictor`. |
|
corrector_name: The name of a registered `sampling.Corrector`. |
|
sde: An `sdes.SDE` object representing the forward SDE. |
|
score_fn: A function (typically learned model) that predicts the score. |
|
y: A `torch.Tensor`, representing the (non-white-)noisy starting point(s) to condition the prior on. |
|
denoise: If `True`, add one-step denoising to the final samples. |
|
eps: A `float` number. The reverse-time SDE and ODE are integrated to `epsilon` to avoid numerical issues. |
|
snr: The SNR to use for the corrector. 0.1 by default, and ignored for `NoneCorrector`. |
|
N: The number of reverse sampling steps. If `None`, uses the SDE's `N` property by default. |
|
|
|
Returns: |
|
A sampling function that returns samples and the number of function evaluations during sampling. |
|
""" |
|
predictor_cls = PredictorRegistry.get_by_name(predictor_name) |
|
corrector_cls = CorrectorRegistry.get_by_name(corrector_name) |
|
predictor = predictor_cls(sde, score_fn, probability_flow=probability_flow) |
|
corrector = corrector_cls(sde, score_fn, snr=snr, n_steps=corrector_steps) |
|
|
|
def pc_sampler(Y_prior=Y_prior, timestep_type=timestep_type): |
|
"""The PC sampler function.""" |
|
with torch.no_grad(): |
|
|
|
if Y_prior == None: |
|
Y_prior = Y |
|
|
|
xt, _ = sde.prior_sampling(Y_prior.shape, Y_prior) |
|
timesteps = timesteps_space(sde.T, sde.N,eps, Y.device, type=timestep_type) |
|
xt = xt.to(Y_prior.device) |
|
for i in range(len(timesteps)): |
|
t = timesteps[i] |
|
if i != len(timesteps) - 1: |
|
stepsize = t - timesteps[i+1] |
|
else: |
|
stepsize = timesteps[-1] |
|
vec_t = torch.ones(Y.shape[0], device=Y.device) * t |
|
xt, xt_mean = corrector.update_fn(xt, vec_t, Y, M) |
|
xt, xt_mean = predictor.update_fn(xt, vec_t, Y, M, stepsize) |
|
x_result = xt_mean if denoise else xt |
|
ns = len(timesteps) * (corrector.n_steps + 1) |
|
return x_result, ns |
|
|
|
if intermediate: |
|
return pc_sampler_intermediate |
|
else: |
|
return pc_sampler |
|
|
|
|
|
|
|
def timesteps_space(sdeT, sdeN, eps, device, type='linear'): |
|
timesteps = torch.linspace(sdeT, eps, sdeN, device=device) |
|
if type == 'linear': |
|
return timesteps |
|
else: |
|
pass |
|
|
|
return timesteps |
|
|