File size: 8,488 Bytes
f032e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import spaces
import yaml
import torch
import librosa
from diffusers import DDIMScheduler
from transformers import AutoProcessor, ClapModel
from model.udit import UDiT
from vae_modules.autoencoder_wrapper import Autoencoder
import numpy as np

diffusion_config = './config/SoloAudio.yaml'
diffusion_ckpt = './pretrained_models/soloaudio_v2.pt'
autoencoder_path = './pretrained_models/audio-vae.pt'
uncond_path = './pretrained_models/uncond.npz'
sample_rate = 24000
device = 'cuda' if torch.cuda.is_available() else 'cpu'

with open(diffusion_config, 'r') as fp:
    diff_config = yaml.safe_load(fp)

v_prediction = diff_config["ddim"]["v_prediction"]

clapmodel = ClapModel.from_pretrained("laion/larger_clap_general").to(device)
processor = AutoProcessor.from_pretrained('laion/larger_clap_general')
autoencoder = Autoencoder(autoencoder_path, 'stable_vae', quantization_first=True)
autoencoder.eval()
autoencoder.to(device)
unet = UDiT(
        **diff_config['diffwrap']['UDiT']
    ).to(device)
unet.load_state_dict(torch.load(diffusion_ckpt)['model'])
unet.eval()

if v_prediction:
    print('v prediction')
    scheduler = DDIMScheduler(**diff_config["ddim"]['diffusers'])
else:
    print('noise prediction')
    scheduler = DDIMScheduler(**diff_config["ddim"]['diffusers'])
    
# these steps reset dtype of noise_scheduler params
latents = torch.randn((1, 128, 128),
                        device=device)
noise = torch.randn(latents.shape).to(latents.device)
timesteps = torch.randint(0, scheduler.config.num_train_timesteps,
                            (noise.shape[0],),
                            device=latents.device).long()
_ = scheduler.add_noise(latents, noise, timesteps)


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    """
    Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
    Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg

@spaces.GPU
def sample_diffusion(mixture, timbre, ddim_steps=50, eta=0, seed=2023, guidance_scale=False, guidance_rescale=0.0,):
    with torch.no_grad():
        scheduler.set_timesteps(ddim_steps)
        generator = torch.Generator(device=device).manual_seed(seed)
        # init noise
        noise = torch.randn(mixture.shape, generator=generator, device=device)
        pred = noise

        for t in scheduler.timesteps:
            pred = scheduler.scale_model_input(pred, t)
            if guidance_scale:
                uncond = torch.tensor(np.load(uncond_path)['arr_0']).unsqueeze(0).to(device)
                pred_combined = torch.cat([pred, pred], dim=0)
                mixture_combined = torch.cat([mixture, mixture], dim=0)
                timbre_combined = torch.cat([timbre, uncond], dim=0)
                output_combined = unet(x=pred_combined, timesteps=t, mixture=mixture_combined, timbre=timbre_combined)
                output_pos, output_neg = torch.chunk(output_combined, 2, dim=0)

                model_output = output_neg + guidance_scale * (output_pos - output_neg)
                if guidance_rescale > 0.0:
                    # avoid overexposed
                    model_output = rescale_noise_cfg(model_output, output_pos,
                                                    guidance_rescale=guidance_rescale)
            else:
                model_output = unet(x=pred, timesteps=t, mixture=mixture, timbre=timbre)
            pred = scheduler.step(model_output=model_output, timestep=t, sample=pred,
                                eta=eta, generator=generator).prev_sample

        pred = autoencoder(embedding=pred).squeeze(1)

    return pred

@spaces.GPU
def tse(gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale):
    with torch.no_grad():
        mixture, _ = librosa.load(gt_file_input, sr=sample_rate)
        # Check the length of the audio in samples
        current_length = len(mixture)
        target_length = sample_rate * 10
        # Cut or pad the audio to match the target length
        if current_length > target_length:
            # Trim the audio if it's longer than the target length
            mixture = mixture[:target_length]
        elif current_length < target_length:
            # Pad the audio with zeros if it's shorter than the target length
            padding = target_length - current_length
            mixture = np.pad(mixture, (0, padding), mode='constant')
        mixture = torch.tensor(mixture).unsqueeze(0).to(device)
        mixture = autoencoder(audio=mixture.unsqueeze(1))

        text_inputs = processor(
            text=[text_input],
            max_length=10,  # Fixed length for text
            padding='max_length',  # Pad text to max length
            truncation=True,  # Truncate text if it's longer than max length
            return_tensors="pt"
        )
        inputs = {
            "input_ids": text_inputs["input_ids"][0].unsqueeze(0),  # Text input IDs
            "attention_mask": text_inputs["attention_mask"][0].unsqueeze(0),  # Attention mask for text
        }
        inputs = {key: value.to(device) for key, value in inputs.items()}
        timbre = clapmodel.get_text_features(**inputs)

    
    pred = sample_diffusion(mixture, timbre, num_infer_steps, eta, seed, guidance_scale, guidance_rescale)
    return sample_rate, pred.squeeze().cpu().numpy()


# CSS styling (optional)
css = """
#col-container {
    margin: 0 auto;
    max-width: 1280px;
}
"""

# Gradio Blocks layout
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
            # SoloAudio: Target Sound Extraction with Language-oriented Audio Diffusion Transformer.
            Adjust advanced settings for more control. This space only supports a 10-second audio input now.
            
            Learn more about 🟣**SoloAudio** on the [SoloAudio Homepage](https://wanghelin1997.github.io/SoloAudio-Demo/).
        """)


        with gr.Tab("Target Sound Extraction"):
            # Basic Input: Text prompt
            with gr.Row():
                gt_file_input = gr.Audio(label="Upload Audio to Extract", type="filepath", value="demo/0_mix.wav")
                text_input = gr.Textbox(
                    label="Text Prompt",
                    show_label=True,
                    max_lines=2,
                    placeholder="Enter your prompt",
                    container=True,
                    value="The sound of gunshot",
                    scale=4
                )
                # Run button
                run_button = gr.Button("Extract", scale=1)

            # Output Component
            result = gr.Audio(label="Extracted Audio", type="numpy")

            # Advanced settings in an Accordion
            with gr.Accordion("Advanced Settings", open=False):
                # Audio Length
                guidance_scale = gr.Slider(minimum=1.0, maximum=10, step=0.1, value=3.0, label="Guidance Scale")
                guidance_rescale = gr.Slider(minimum=0.0, maximum=1, step=0.05, value=0., label="Guidance Rescale")
                num_infer_steps = gr.Slider(minimum=25, maximum=200, step=5, value=50, label="DDIM Steps")
                eta = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.0, label="Eta")
                seed = gr.Slider(minimum=0, maximum=100, step=1, value=0, label="Seed")

            # Define the trigger and input-output linking for generation
            run_button.click(
                fn=tse,
                inputs=[gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale],
                outputs=[result]
            )
            text_input.submit(fn=tse,
                inputs=[gt_file_input, text_input, num_infer_steps, eta, seed, guidance_scale, guidance_rescale],
                outputs=[result]
            )

    # Launch the Gradio demo
    demo.launch()