File size: 18,515 Bytes
f032e68
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# --------------------------------------------------------
# References:
# GLIDE: https://github.com/openai/glide-text2im
# MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py
# --------------------------------------------------------

import torch
import torch.nn as nn
import numpy as np
import math
import warnings
import einops
import torch.utils.checkpoint
import yaml
import torch.nn.functional as F
from .attention import Attention


def _no_grad_trunc_normal_(tensor, mean, std, a, b):
    # Cut & paste from PyTorch official master until it's in a few official releases - RW
    # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
    def norm_cdf(x):
        # Computes standard normal cumulative distribution function
        return (1. + math.erf(x / math.sqrt(2.))) / 2.

    if (mean < a - 2 * std) or (mean > b + 2 * std):
        warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
                      "The distribution of values may be incorrect.",
                      stacklevel=2)

    with torch.no_grad():
        # Values are generated by using a truncated uniform distribution and
        # then using the inverse CDF for the normal distribution.
        # Get upper and lower cdf values
        l = norm_cdf((a - mean) / std)
        u = norm_cdf((b - mean) / std)

        # Uniformly fill tensor with values from [l, u], then translate to
        # [2l-1, 2u-1].
        tensor.uniform_(2 * l - 1, 2 * u - 1)

        # Use inverse cdf transform for normal distribution to get truncated
        # standard normal
        tensor.erfinv_()

        # Transform to proper mean, std
        tensor.mul_(std * math.sqrt(2.))
        tensor.add_(mean)

        # Clamp to ensure it's in the proper range
        tensor.clamp_(min=a, max=b)
        return tensor


def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
    # type: (Tensor, float, float, float, float) -> Tensor
    r"""Fills the input Tensor with values drawn from a truncated
    normal distribution. The values are effectively drawn from the
    normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
    with values outside :math:`[a, b]` redrawn until they are within
    the bounds. The method used for generating the random values works
    best when :math:`a \leq \text{mean} \leq b`.
    Args:
        tensor: an n-dimensional `torch.Tensor`
        mean: the mean of the normal distribution
        std: the standard deviation of the normal distribution
        a: the minimum cutoff value
        b: the maximum cutoff value
    Examples:
        >>> w = torch.empty(3, 5)
        >>> nn.init.trunc_normal_(w)
    """
    return _no_grad_trunc_normal_(tensor, mean, std, a, b)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x
    


class PositionalConvEmbedding(nn.Module):
    """
    Relative positional embedding used in HuBERT
    """

    def __init__(self, dim=768, kernel_size=128, groups=16):
        super().__init__()
        self.conv = nn.Conv1d(
            dim,
            dim,
            kernel_size=kernel_size,
            padding=kernel_size // 2,
            groups=groups,
            bias=True
        )
        self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2)

    def forward(self, x):
        x = x.transpose(2, 1)
        # B C T
        x = self.conv(x)
        x = F.gelu(x[:, :, :-1])
        x = x.transpose(2, 1)
        return x


class SinusoidalPositionalEncoding(nn.Module):
    def __init__(self, dim, length):
        super(SinusoidalPositionalEncoding, self).__init__()
        self.length = length
        self.dim = dim
        self.register_buffer('pe', self._generate_positional_encoding(length, dim))

    def _generate_positional_encoding(self, length, dim):
        pe = torch.zeros(length, dim)
        position = torch.arange(0, length, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim))

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        return pe

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return x


class PE_wrapper(nn.Module):
    def __init__(self, dim=768, method='none', length=None):
        super().__init__()
        self.method = method
        if method == 'abs':
            # init absolute pe like UViT
            self.length = length
            self.abs_pe = nn.Parameter(torch.zeros(1, length, dim))
            trunc_normal_(self.abs_pe, std=.02)
        elif method == 'conv':
            self.conv_pe = PositionalConvEmbedding(dim=dim)
        elif method == 'sinu':
            self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length)
        elif method == 'none':
            # skip pe
            self.id = nn.Identity()
        else:
            raise NotImplementedError

    def forward(self, x):
        if self.method == 'abs':
            _, L, _ = x.shape
            assert L <= self.length
            x = x + self.abs_pe[:, :L, :]
        elif self.method == 'conv':
            x = x + self.conv_pe(x)
        elif self.method == 'sinu':
            x = self.sinu_pe(x)
        elif self.method == 'none':
            x = self.id(x)
        else:
            raise NotImplementedError
        return x
    
    
def modulate(x, shift, scale):
    return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)


#################################################################################
#               Embedding Layers for Timesteps and Class Labels                 #
#################################################################################

class TimestepEmbedder(nn.Module):
    """
    Embeds scalar timesteps into vector representations.
    """
    def __init__(self, hidden_size, frequency_embedding_size=256):
        super().__init__()
        self.mlp = nn.Sequential(
            nn.Linear(frequency_embedding_size, hidden_size, bias=True),
            nn.SiLU(),
            nn.Linear(hidden_size, hidden_size, bias=True),
        )
        self.frequency_embedding_size = frequency_embedding_size

    @staticmethod
    def timestep_embedding(t, dim, max_period=10000):
        """
        Create sinusoidal timestep embeddings.
        :param t: a 1-D Tensor of N indices, one per batch element.
                          These may be fractional.
        :param dim: the dimension of the output.
        :param max_period: controls the minimum frequency of the embeddings.
        :return: an (N, D) Tensor of positional embeddings.
        """
        # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
        half = dim // 2
        freqs = torch.exp(
            -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
        ).to(device=t.device)
        args = t[:, None].float() * freqs[None]
        embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
        if dim % 2:
            embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
        return embedding

    def forward(self, t):
        t_freq = self.timestep_embedding(t, self.frequency_embedding_size)
        t_emb = self.mlp(t_freq)
        return t_emb


class LabelEmbedder(nn.Module):
    """
    Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance.
    """
    def __init__(self, num_classes, hidden_size, dropout_prob):
        super().__init__()
        use_cfg_embedding = dropout_prob > 0
        self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size)
        self.num_classes = num_classes
        self.dropout_prob = dropout_prob

    def token_drop(self, labels, force_drop_ids=None):
        """
        Drops labels to enable classifier-free guidance.
        """
        if force_drop_ids is None:
            drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob
        else:
            drop_ids = force_drop_ids == 1
        labels = torch.where(drop_ids, self.num_classes, labels)
        return labels

    def forward(self, labels, train, force_drop_ids=None):
        use_dropout = self.dropout_prob > 0
        if (train and use_dropout) or (force_drop_ids is not None):
            labels = self.token_drop(labels, force_drop_ids)
        embeddings = self.embedding_table(labels)
        return embeddings


#################################################################################
#                                 Core DiT Model                                #
#################################################################################

class DiTBlock(nn.Module):
    """
    A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning.
    """
    def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, skip=False, skip_norm=True, use_checkpoint=True, **block_kwargs):
        super().__init__()
        self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs)
        self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        mlp_hidden_dim = int(hidden_size * mlp_ratio)
        approx_gelu = lambda: nn.GELU(approximate="tanh")
        self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 6 * hidden_size, bias=True)
        )
        self.skip_linear = nn.Linear(2 * hidden_size, hidden_size) if skip else None
        self.skip_norm =  nn.LayerNorm(2 * hidden_size, elementwise_affine=False, eps=1e-6) if skip_norm else nn.Identity()
        self.use_checkpoint = use_checkpoint
    
    def forward(self, x, c, skip=None):
        if self.use_checkpoint:
            return torch.utils.checkpoint.checkpoint(self._forward, x, c, skip)
        else:
            return self._forward(x, c, skip)

    def _forward(self, x, c, skip=None):
        if self.skip_linear is not None:
            cat = torch.cat([x, skip], dim=-1)
            cat = self.skip_norm(cat)
            x = self.skip_linear(cat)
        shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1)
        x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa))
        x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp))
        return x


class FinalLayer(nn.Module):
    """
    The final layer of DiT.
    """
    def __init__(self, hidden_size, output_dim):
        super().__init__()
        self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
        self.linear = nn.Linear(hidden_size, output_dim, bias=True)
        self.adaLN_modulation = nn.Sequential(
            nn.SiLU(),
            nn.Linear(hidden_size, 2 * hidden_size, bias=True)
        )

    def forward(self, x, c):
        shift, scale = self.adaLN_modulation(c).chunk(2, dim=1)
        x = modulate(self.norm_final(x), shift, scale)
        x = self.linear(x)
        return x


class UDiT(nn.Module):
    """
    Diffusion model with a Transformer backbone.
    """
    def __init__(
        self,
        input_dim=256,
        output_dim=128,
        pos_method='none',
        pos_length=500,
        timbre_dim=512,
        hidden_size=1152,
        depth=28,
        num_heads=16,
        mlp_ratio=4.0,
        use_checkpoint=True
    ):
        super().__init__()
        self.num_heads = num_heads
        self.input_proj = nn.Linear(input_dim, hidden_size, bias=True)
        self.t_embedder = TimestepEmbedder(hidden_size)
        self.pos_embed = PE_wrapper(dim=hidden_size, method=pos_method, length=pos_length)
        self.timbre_proj = nn.Linear(timbre_dim, hidden_size, bias=True)

        self.in_blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) for _ in range(depth // 2)
        ])
        self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint)
        self.out_blocks = nn.ModuleList([
            DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, skip=True, use_checkpoint=use_checkpoint) for _ in range(depth // 2)
        ])
        
        self.final_layer = FinalLayer(hidden_size, output_dim)
        self.initialize_weights()

    def initialize_weights(self):
        # Initialize transformer layers:
        def _basic_init(module):
            if isinstance(module, nn.Linear):
                torch.nn.init.xavier_uniform_(module.weight)
                if module.bias is not None:
                    nn.init.constant_(module.bias, 0)
        self.apply(_basic_init)

        # Initialize patch_embed like nn.Linear (instead of nn.Conv2d):
        nn.init.normal_(self.input_proj.weight, std=0.02)
        nn.init.normal_(self.timbre_proj.weight, std=0.02)

        # Initialize timestep embedding MLP:
        nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02)
        nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02)

        # Zero-out adaLN modulation layers in DiT blocks:
        for block in self.in_blocks:
            nn.init.constant_(self.mid_block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(self.mid_block.adaLN_modulation[-1].bias, 0)
        
        nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
        
        for block in self.out_blocks:
            nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
            nn.init.constant_(block.adaLN_modulation[-1].bias, 0)

        # Zero-out output layers:
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
        nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
        nn.init.constant_(self.final_layer.linear.weight, 0)
        nn.init.constant_(self.final_layer.linear.bias, 0)

    def forward(self, x, timesteps, mixture, timbre):
        """
        Forward pass of DiT.
        x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images)
        t: (N,) tensor of diffusion timesteps
        y: (N,) tensor of class labels
        """
        x = x.transpose(2,1)
        mixture = mixture.transpose(2,1)
        x = self.input_proj(torch.cat((x, mixture), dim=-1))
        x = self.pos_embed(x)
        if not torch.is_tensor(timesteps):
            timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device)
        elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
            timesteps = timesteps[None].to(x.device)
        t = self.t_embedder(timesteps)                   # (N, D)
        timbre = self.timbre_proj(timbre)
        c = t + timbre                                # (N, D)

        skips = []
        for blk in self.in_blocks:
            x = blk(x, c)
            skips.append(x)

        x = self.mid_block(x, c)

        for blk in self.out_blocks:
            x = blk(x, c, skips.pop())

        x = self.final_layer(x, c)                # (N, T, out_dim)
        x = x.transpose(2, 1)
        return x


#################################################################################
#                                   DiT Configs                                  #
#################################################################################

def DiT_XL_2(**kwargs):
    return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs)

def DiT_XL_4(**kwargs):
    return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs)

def DiT_XL_8(**kwargs):
    return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs)

def DiT_L_2(**kwargs):
    return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs)

def DiT_L_4(**kwargs):
    return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs)

def DiT_L_8(**kwargs):
    return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs)

def DiT_B_2(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs)

def DiT_B_4(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs)

def DiT_B_8(**kwargs):
    return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs)

def DiT_S_2(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs)

def DiT_S_4(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs)

def DiT_S_8(**kwargs):
    return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs)


DiT_models = {
    'DiT-XL/2': DiT_XL_2,  'DiT-XL/4': DiT_XL_4,  'DiT-XL/8': DiT_XL_8,
    'DiT-L/2':  DiT_L_2,   'DiT-L/4':  DiT_L_4,   'DiT-L/8':  DiT_L_8,
    'DiT-B/2':  DiT_B_2,   'DiT-B/4':  DiT_B_4,   'DiT-B/8':  DiT_B_8,
    'DiT-S/2':  DiT_S_2,   'DiT-S/4':  DiT_S_4,   'DiT-S/8':  DiT_S_8,
}

if __name__ == "__main__":
    with open('/export/corpora7/HW/DPMTSE-main/src/config/DiffTSE_udit_conv_v_b_1000.yaml', 'r') as fp:
        config = yaml.safe_load(fp)
    device = 'cuda'

    model = UDiT(
        **config['diffwrap']['UDiT']
    ).to(device)

    x = torch.rand((1, 128, 150)).to(device)
    t = torch.randint(0, 1000, (1, )).long().to(device)
    mixture = torch.rand((1, 128, 150)).to(device)
    timbre = torch.rand((1, 512)).to(device)

    y = model(x, t, mixture, timbre)
    print(y.shape)