|
import torch |
|
import torch.nn as nn |
|
from .dac import DAC |
|
from .stable_vae import load_vae |
|
|
|
|
|
class Autoencoder(nn.Module): |
|
def __init__(self, ckpt_path, model_type='stable_vae', quantization_first=True): |
|
super(Autoencoder, self).__init__() |
|
self.model_type = model_type |
|
if self.model_type == 'dac': |
|
model = DAC.load(ckpt_path) |
|
elif self.model_type == 'stable_vae': |
|
model = load_vae(ckpt_path) |
|
else: |
|
raise NotImplementedError(f"Model type not implemented: {self.model_type}") |
|
self.ae = model.eval() |
|
self.quantization_first = quantization_first |
|
print(f'Autoencoder quantization first mode: {quantization_first}') |
|
|
|
@torch.no_grad() |
|
def forward(self, audio=None, embedding=None): |
|
if self.model_type == 'dac': |
|
return self.process_dac(audio, embedding) |
|
elif self.model_type == 'encodec': |
|
return self.process_encodec(audio, embedding) |
|
elif self.model_type == 'stable_vae': |
|
return self.process_stable_vae(audio, embedding) |
|
else: |
|
raise NotImplementedError(f"Model type not implemented: {self.model_type}") |
|
|
|
def process_dac(self, audio=None, embedding=None): |
|
if audio is not None: |
|
z = self.ae.encoder(audio) |
|
if self.quantization_first: |
|
z, *_ = self.ae.quantizer(z, None) |
|
return z |
|
elif embedding is not None: |
|
z = embedding |
|
if self.quantization_first: |
|
audio = self.ae.decoder(z) |
|
else: |
|
z, *_ = self.ae.quantizer(z, None) |
|
audio = self.ae.decoder(z) |
|
return audio |
|
else: |
|
raise ValueError("Either audio or embedding must be provided.") |
|
|
|
def process_encodec(self, audio=None, embedding=None): |
|
if audio is not None: |
|
z = self.ae.encoder(audio) |
|
if self.quantization_first: |
|
code = self.ae.quantizer.encode(z) |
|
z = self.ae.quantizer.decode(code) |
|
return z |
|
elif embedding is not None: |
|
z = embedding |
|
if self.quantization_first: |
|
audio = self.ae.decoder(z) |
|
else: |
|
code = self.ae.quantizer.encode(z) |
|
z = self.ae.quantizer.decode(code) |
|
audio = self.ae.decoder(z) |
|
return audio |
|
else: |
|
raise ValueError("Either audio or embedding must be provided.") |
|
|
|
def process_stable_vae(self, audio=None, embedding=None): |
|
if audio is not None: |
|
z = self.ae.encoder(audio) |
|
if self.quantization_first: |
|
z = self.ae.bottleneck.encode(z) |
|
return z |
|
if embedding is not None: |
|
z = embedding |
|
if self.quantization_first: |
|
audio = self.ae.decoder(z) |
|
else: |
|
z = self.ae.bottleneck.encode(z) |
|
audio = self.ae.decoder(z) |
|
return audio |
|
else: |
|
raise ValueError("Either audio or embedding must be provided.") |
|
|