|
from typing import Union |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from torch.nn.utils import weight_norm |
|
|
|
from .layers import WNConv1d |
|
|
|
|
|
class VectorQuantize(nn.Module): |
|
""" |
|
Implementation of VQ similar to Karpathy's repo: |
|
https://github.com/karpathy/deep-vector-quantization |
|
Additionally uses following tricks from Improved VQGAN |
|
(https://arxiv.org/pdf/2110.04627.pdf): |
|
1. Factorized codes: Perform nearest neighbor lookup in low-dimensional space |
|
for improved codebook usage |
|
2. l2-normalized codes: Converts euclidean distance to cosine similarity which |
|
improves training stability |
|
""" |
|
|
|
def __init__(self, input_dim: int, codebook_size: int, codebook_dim: int): |
|
super().__init__() |
|
self.codebook_size = codebook_size |
|
self.codebook_dim = codebook_dim |
|
|
|
self.in_proj = WNConv1d(input_dim, codebook_dim, kernel_size=1) |
|
self.out_proj = WNConv1d(codebook_dim, input_dim, kernel_size=1) |
|
self.codebook = nn.Embedding(codebook_size, codebook_dim) |
|
|
|
def forward(self, z): |
|
"""Quantized the input tensor using a fixed codebook and returns |
|
the corresponding codebook vectors |
|
|
|
Parameters |
|
---------- |
|
z : Tensor[B x D x T] |
|
|
|
Returns |
|
------- |
|
Tensor[B x D x T] |
|
Quantized continuous representation of input |
|
Tensor[1] |
|
Commitment loss to train encoder to predict vectors closer to codebook |
|
entries |
|
Tensor[1] |
|
Codebook loss to update the codebook |
|
Tensor[B x T] |
|
Codebook indices (quantized discrete representation of input) |
|
Tensor[B x D x T] |
|
Projected latents (continuous representation of input before quantization) |
|
""" |
|
|
|
|
|
z_e = self.in_proj(z) |
|
z_q, indices = self.decode_latents(z_e) |
|
|
|
commitment_loss = F.mse_loss(z_e, z_q.detach(), reduction="none").mean([1, 2]) |
|
codebook_loss = F.mse_loss(z_q, z_e.detach(), reduction="none").mean([1, 2]) |
|
|
|
z_q = ( |
|
z_e + (z_q - z_e).detach() |
|
) |
|
|
|
z_q = self.out_proj(z_q) |
|
|
|
return z_q, commitment_loss, codebook_loss, indices, z_e |
|
|
|
def embed_code(self, embed_id): |
|
return F.embedding(embed_id, self.codebook.weight) |
|
|
|
def decode_code(self, embed_id): |
|
return self.embed_code(embed_id).transpose(1, 2) |
|
|
|
def decode_latents(self, latents): |
|
encodings = rearrange(latents, "b d t -> (b t) d") |
|
codebook = self.codebook.weight |
|
|
|
|
|
encodings = F.normalize(encodings) |
|
codebook = F.normalize(codebook) |
|
|
|
|
|
dist = ( |
|
encodings.pow(2).sum(1, keepdim=True) |
|
- 2 * encodings @ codebook.t() |
|
+ codebook.pow(2).sum(1, keepdim=True).t() |
|
) |
|
indices = rearrange((-dist).max(1)[1], "(b t) -> b t", b=latents.size(0)) |
|
z_q = self.decode_code(indices) |
|
return z_q, indices |
|
|
|
|
|
class ResidualVectorQuantize(nn.Module): |
|
""" |
|
Introduced in SoundStream: An end2end neural audio codec |
|
https://arxiv.org/abs/2107.03312 |
|
""" |
|
|
|
def __init__( |
|
self, |
|
input_dim: int = 512, |
|
n_codebooks: int = 9, |
|
codebook_size: int = 1024, |
|
codebook_dim: Union[int, list] = 8, |
|
quantizer_dropout: float = 0.0, |
|
): |
|
super().__init__() |
|
if isinstance(codebook_dim, int): |
|
codebook_dim = [codebook_dim for _ in range(n_codebooks)] |
|
|
|
self.n_codebooks = n_codebooks |
|
self.codebook_dim = codebook_dim |
|
self.codebook_size = codebook_size |
|
|
|
self.quantizers = nn.ModuleList( |
|
[ |
|
VectorQuantize(input_dim, codebook_size, codebook_dim[i]) |
|
for i in range(n_codebooks) |
|
] |
|
) |
|
self.quantizer_dropout = quantizer_dropout |
|
|
|
def forward(self, z, n_quantizers: int = None): |
|
"""Quantized the input tensor using a fixed set of `n` codebooks and returns |
|
the corresponding codebook vectors |
|
Parameters |
|
---------- |
|
z : Tensor[B x D x T] |
|
n_quantizers : int, optional |
|
No. of quantizers to use |
|
(n_quantizers < self.n_codebooks ex: for quantizer dropout) |
|
Note: if `self.quantizer_dropout` is True, this argument is ignored |
|
when in training mode, and a random number of quantizers is used. |
|
Returns |
|
------- |
|
dict |
|
A dictionary with the following keys: |
|
|
|
"z" : Tensor[B x D x T] |
|
Quantized continuous representation of input |
|
"codes" : Tensor[B x N x T] |
|
Codebook indices for each codebook |
|
(quantized discrete representation of input) |
|
"latents" : Tensor[B x N*D x T] |
|
Projected latents (continuous representation of input before quantization) |
|
"vq/commitment_loss" : Tensor[1] |
|
Commitment loss to train encoder to predict vectors closer to codebook |
|
entries |
|
"vq/codebook_loss" : Tensor[1] |
|
Codebook loss to update the codebook |
|
""" |
|
z_q = 0 |
|
residual = z |
|
commitment_loss = 0 |
|
codebook_loss = 0 |
|
|
|
codebook_indices = [] |
|
latents = [] |
|
|
|
if n_quantizers is None: |
|
n_quantizers = self.n_codebooks |
|
if self.training: |
|
n_quantizers = torch.ones((z.shape[0],)) * self.n_codebooks + 1 |
|
dropout = torch.randint(1, self.n_codebooks + 1, (z.shape[0],)) |
|
n_dropout = int(z.shape[0] * self.quantizer_dropout) |
|
n_quantizers[:n_dropout] = dropout[:n_dropout] |
|
n_quantizers = n_quantizers.to(z.device) |
|
|
|
for i, quantizer in enumerate(self.quantizers): |
|
if self.training is False and i >= n_quantizers: |
|
break |
|
|
|
z_q_i, commitment_loss_i, codebook_loss_i, indices_i, z_e_i = quantizer( |
|
residual |
|
) |
|
|
|
|
|
mask = ( |
|
torch.full((z.shape[0],), fill_value=i, device=z.device) < n_quantizers |
|
) |
|
z_q = z_q + z_q_i * mask[:, None, None] |
|
residual = residual - z_q_i |
|
|
|
|
|
commitment_loss += (commitment_loss_i * mask).mean() |
|
codebook_loss += (codebook_loss_i * mask).mean() |
|
|
|
codebook_indices.append(indices_i) |
|
latents.append(z_e_i) |
|
|
|
codes = torch.stack(codebook_indices, dim=1) |
|
latents = torch.cat(latents, dim=1) |
|
|
|
return z_q, codes, latents, commitment_loss, codebook_loss |
|
|
|
def from_codes(self, codes: torch.Tensor): |
|
"""Given the quantized codes, reconstruct the continuous representation |
|
Parameters |
|
---------- |
|
codes : Tensor[B x N x T] |
|
Quantized discrete representation of input |
|
Returns |
|
------- |
|
Tensor[B x D x T] |
|
Quantized continuous representation of input |
|
""" |
|
z_q = 0.0 |
|
z_p = [] |
|
n_codebooks = codes.shape[1] |
|
for i in range(n_codebooks): |
|
z_p_i = self.quantizers[i].decode_code(codes[:, i, :]) |
|
z_p.append(z_p_i) |
|
|
|
z_q_i = self.quantizers[i].out_proj(z_p_i) |
|
z_q = z_q + z_q_i |
|
return z_q, torch.cat(z_p, dim=1), codes |
|
|
|
def from_latents(self, latents: torch.Tensor): |
|
"""Given the unquantized latents, reconstruct the |
|
continuous representation after quantization. |
|
|
|
Parameters |
|
---------- |
|
latents : Tensor[B x N x T] |
|
Continuous representation of input after projection |
|
|
|
Returns |
|
------- |
|
Tensor[B x D x T] |
|
Quantized representation of full-projected space |
|
Tensor[B x D x T] |
|
Quantized representation of latent space |
|
""" |
|
z_q = 0 |
|
z_p = [] |
|
codes = [] |
|
dims = np.cumsum([0] + [q.codebook_dim for q in self.quantizers]) |
|
|
|
n_codebooks = np.where(dims <= latents.shape[1])[0].max(axis=0, keepdims=True)[ |
|
0 |
|
] |
|
for i in range(n_codebooks): |
|
j, k = dims[i], dims[i + 1] |
|
z_p_i, codes_i = self.quantizers[i].decode_latents(latents[:, j:k, :]) |
|
z_p.append(z_p_i) |
|
codes.append(codes_i) |
|
|
|
z_q_i = self.quantizers[i].out_proj(z_p_i) |
|
z_q = z_q + z_q_i |
|
|
|
return z_q, torch.cat(z_p, dim=1), torch.stack(codes, dim=1) |
|
|
|
|
|
if __name__ == "__main__": |
|
rvq = ResidualVectorQuantize(quantizer_dropout=True) |
|
x = torch.randn(16, 512, 80) |
|
y = rvq(x) |
|
print(y["latents"].shape) |
|
|