# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # -------------------------------------------------------- # References: # GLIDE: https://github.com/openai/glide-text2im # MAE: https://github.com/facebookresearch/mae/blob/main/models_mae.py # -------------------------------------------------------- import torch import torch.nn as nn import numpy as np import math import warnings import einops import torch.utils.checkpoint import yaml import torch.nn.functional as F from .attention import Attention def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class PositionalConvEmbedding(nn.Module): """ Relative positional embedding used in HuBERT """ def __init__(self, dim=768, kernel_size=128, groups=16): super().__init__() self.conv = nn.Conv1d( dim, dim, kernel_size=kernel_size, padding=kernel_size // 2, groups=groups, bias=True ) self.conv = nn.utils.parametrizations.weight_norm(self.conv, name="weight", dim=2) def forward(self, x): x = x.transpose(2, 1) # B C T x = self.conv(x) x = F.gelu(x[:, :, :-1]) x = x.transpose(2, 1) return x class SinusoidalPositionalEncoding(nn.Module): def __init__(self, dim, length): super(SinusoidalPositionalEncoding, self).__init__() self.length = length self.dim = dim self.register_buffer('pe', self._generate_positional_encoding(length, dim)) def _generate_positional_encoding(self, length, dim): pe = torch.zeros(length, dim) position = torch.arange(0, length, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, dim, 2).float() * (-math.log(10000.0) / dim)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0) return pe def forward(self, x): x = x + self.pe[:, :x.size(1)] return x class PE_wrapper(nn.Module): def __init__(self, dim=768, method='none', length=None): super().__init__() self.method = method if method == 'abs': # init absolute pe like UViT self.length = length self.abs_pe = nn.Parameter(torch.zeros(1, length, dim)) trunc_normal_(self.abs_pe, std=.02) elif method == 'conv': self.conv_pe = PositionalConvEmbedding(dim=dim) elif method == 'sinu': self.sinu_pe = SinusoidalPositionalEncoding(dim=dim, length=length) elif method == 'none': # skip pe self.id = nn.Identity() else: raise NotImplementedError def forward(self, x): if self.method == 'abs': _, L, _ = x.shape assert L <= self.length x = x + self.abs_pe[:, :L, :] elif self.method == 'conv': x = x + self.conv_pe(x) elif self.method == 'sinu': x = self.sinu_pe(x) elif self.method == 'none': x = self.id(x) else: raise NotImplementedError return x def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) ################################################################################# # Embedding Layers for Timesteps and Class Labels # ################################################################################# class TimestepEmbedder(nn.Module): """ Embeds scalar timesteps into vector representations. """ def __init__(self, hidden_size, frequency_embedding_size=256): super().__init__() self.mlp = nn.Sequential( nn.Linear(frequency_embedding_size, hidden_size, bias=True), nn.SiLU(), nn.Linear(hidden_size, hidden_size, bias=True), ) self.frequency_embedding_size = frequency_embedding_size @staticmethod def timestep_embedding(t, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ # https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=t.device) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def forward(self, t): t_freq = self.timestep_embedding(t, self.frequency_embedding_size) t_emb = self.mlp(t_freq) return t_emb class LabelEmbedder(nn.Module): """ Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. """ def __init__(self, num_classes, hidden_size, dropout_prob): super().__init__() use_cfg_embedding = dropout_prob > 0 self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) self.num_classes = num_classes self.dropout_prob = dropout_prob def token_drop(self, labels, force_drop_ids=None): """ Drops labels to enable classifier-free guidance. """ if force_drop_ids is None: drop_ids = torch.rand(labels.shape[0], device=labels.device) < self.dropout_prob else: drop_ids = force_drop_ids == 1 labels = torch.where(drop_ids, self.num_classes, labels) return labels def forward(self, labels, train, force_drop_ids=None): use_dropout = self.dropout_prob > 0 if (train and use_dropout) or (force_drop_ids is not None): labels = self.token_drop(labels, force_drop_ids) embeddings = self.embedding_table(labels) return embeddings ################################################################################# # Core DiT Model # ################################################################################# class DiTBlock(nn.Module): """ A DiT block with adaptive layer norm zero (adaLN-Zero) conditioning. """ def __init__(self, hidden_size, num_heads, mlp_ratio=4.0, skip=False, skip_norm=True, use_checkpoint=True, **block_kwargs): super().__init__() self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.attn = Attention(hidden_size, num_heads=num_heads, qkv_bias=True, **block_kwargs) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) mlp_hidden_dim = int(hidden_size * mlp_ratio) approx_gelu = lambda: nn.GELU(approximate="tanh") self.mlp = Mlp(in_features=hidden_size, hidden_features=mlp_hidden_dim, act_layer=approx_gelu, drop=0) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 6 * hidden_size, bias=True) ) self.skip_linear = nn.Linear(2 * hidden_size, hidden_size) if skip else None self.skip_norm = nn.LayerNorm(2 * hidden_size, elementwise_affine=False, eps=1e-6) if skip_norm else nn.Identity() self.use_checkpoint = use_checkpoint def forward(self, x, c, skip=None): if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, c, skip) else: return self._forward(x, c, skip) def _forward(self, x, c, skip=None): if self.skip_linear is not None: cat = torch.cat([x, skip], dim=-1) cat = self.skip_norm(cat) x = self.skip_linear(cat) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.adaLN_modulation(c).chunk(6, dim=1) x = x + gate_msa.unsqueeze(1) * self.attn(modulate(self.norm1(x), shift_msa, scale_msa)) x = x + gate_mlp.unsqueeze(1) * self.mlp(modulate(self.norm2(x), shift_mlp, scale_mlp)) return x class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__(self, hidden_size, output_dim): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = nn.Linear(hidden_size, output_dim, bias=True) self.adaLN_modulation = nn.Sequential( nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x, c): shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class UDiT(nn.Module): """ Diffusion model with a Transformer backbone. """ def __init__( self, input_dim=256, output_dim=128, pos_method='none', pos_length=500, timbre_dim=512, hidden_size=1152, depth=28, num_heads=16, mlp_ratio=4.0, use_checkpoint=True ): super().__init__() self.num_heads = num_heads self.input_proj = nn.Linear(input_dim, hidden_size, bias=True) self.t_embedder = TimestepEmbedder(hidden_size) self.pos_embed = PE_wrapper(dim=hidden_size, method=pos_method, length=pos_length) self.timbre_proj = nn.Linear(timbre_dim, hidden_size, bias=True) self.in_blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) for _ in range(depth // 2) ]) self.mid_block = DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, use_checkpoint=use_checkpoint) self.out_blocks = nn.ModuleList([ DiTBlock(hidden_size, num_heads, mlp_ratio=mlp_ratio, skip=True, use_checkpoint=use_checkpoint) for _ in range(depth // 2) ]) self.final_layer = FinalLayer(hidden_size, output_dim) self.initialize_weights() def initialize_weights(self): # Initialize transformer layers: def _basic_init(module): if isinstance(module, nn.Linear): torch.nn.init.xavier_uniform_(module.weight) if module.bias is not None: nn.init.constant_(module.bias, 0) self.apply(_basic_init) # Initialize patch_embed like nn.Linear (instead of nn.Conv2d): nn.init.normal_(self.input_proj.weight, std=0.02) nn.init.normal_(self.timbre_proj.weight, std=0.02) # Initialize timestep embedding MLP: nn.init.normal_(self.t_embedder.mlp[0].weight, std=0.02) nn.init.normal_(self.t_embedder.mlp[2].weight, std=0.02) # Zero-out adaLN modulation layers in DiT blocks: for block in self.in_blocks: nn.init.constant_(self.mid_block.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.mid_block.adaLN_modulation[-1].bias, 0) nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) for block in self.out_blocks: nn.init.constant_(block.adaLN_modulation[-1].weight, 0) nn.init.constant_(block.adaLN_modulation[-1].bias, 0) # Zero-out output layers: nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0) nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0) nn.init.constant_(self.final_layer.linear.weight, 0) nn.init.constant_(self.final_layer.linear.bias, 0) def forward(self, x, timesteps, mixture, timbre): """ Forward pass of DiT. x: (N, C, H, W) tensor of spatial inputs (images or latent representations of images) t: (N,) tensor of diffusion timesteps y: (N,) tensor of class labels """ x = x.transpose(2,1) mixture = mixture.transpose(2,1) x = self.input_proj(torch.cat((x, mixture), dim=-1)) x = self.pos_embed(x) if not torch.is_tensor(timesteps): timesteps = torch.tensor([timesteps], dtype=torch.long, device=x.device) elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0: timesteps = timesteps[None].to(x.device) t = self.t_embedder(timesteps) # (N, D) timbre = self.timbre_proj(timbre) c = t + timbre # (N, D) skips = [] for blk in self.in_blocks: x = blk(x, c) skips.append(x) x = self.mid_block(x, c) for blk in self.out_blocks: x = blk(x, c, skips.pop()) x = self.final_layer(x, c) # (N, T, out_dim) x = x.transpose(2, 1) return x ################################################################################# # DiT Configs # ################################################################################# def DiT_XL_2(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=2, num_heads=16, **kwargs) def DiT_XL_4(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=4, num_heads=16, **kwargs) def DiT_XL_8(**kwargs): return DiT(depth=28, hidden_size=1152, patch_size=8, num_heads=16, **kwargs) def DiT_L_2(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=2, num_heads=16, **kwargs) def DiT_L_4(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=4, num_heads=16, **kwargs) def DiT_L_8(**kwargs): return DiT(depth=24, hidden_size=1024, patch_size=8, num_heads=16, **kwargs) def DiT_B_2(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=2, num_heads=12, **kwargs) def DiT_B_4(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=4, num_heads=12, **kwargs) def DiT_B_8(**kwargs): return DiT(depth=12, hidden_size=768, patch_size=8, num_heads=12, **kwargs) def DiT_S_2(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=2, num_heads=6, **kwargs) def DiT_S_4(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=4, num_heads=6, **kwargs) def DiT_S_8(**kwargs): return DiT(depth=12, hidden_size=384, patch_size=8, num_heads=6, **kwargs) DiT_models = { 'DiT-XL/2': DiT_XL_2, 'DiT-XL/4': DiT_XL_4, 'DiT-XL/8': DiT_XL_8, 'DiT-L/2': DiT_L_2, 'DiT-L/4': DiT_L_4, 'DiT-L/8': DiT_L_8, 'DiT-B/2': DiT_B_2, 'DiT-B/4': DiT_B_4, 'DiT-B/8': DiT_B_8, 'DiT-S/2': DiT_S_2, 'DiT-S/4': DiT_S_4, 'DiT-S/8': DiT_S_8, } if __name__ == "__main__": with open('/export/corpora7/HW/DPMTSE-main/src/config/DiffTSE_udit_conv_v_b_1000.yaml', 'r') as fp: config = yaml.safe_load(fp) device = 'cuda' model = UDiT( **config['diffwrap']['UDiT'] ).to(device) x = torch.rand((1, 128, 150)).to(device) t = torch.randint(0, 1000, (1, )).long().to(device) mixture = torch.rand((1, 128, 150)).to(device) timbre = torch.rand((1, 512)).to(device) y = model(x, t, mixture, timbre) print(y.shape)