export / app.py
echarlaix's picture
echarlaix HF staff
Push new repo instead of PR
d1c5472
raw
history blame
7.07 kB
import os
import shutil
import torch
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from pathlib import Path
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVStableDiffusionPipeline,
OVStableDiffusionXLPipeline,
OVLatentConsistencyModelPipeline,
OVModelForPix2Struct,
OVWeightQuantizationConfig,
)
from optimum.intel.openvino.modeling_diffusion import OVStableDiffusionPipelineBase
def export(
model_id: str,
private_repo: bool,
oauth_token: gr.OAuthToken,
):
if oauth_token.token is None:
raise ValueError("You must be logged in to use this space")
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
new_repo_id = f"{username}/{model_name}-openvino"
task = TasksManager.infer_task_from_model(model_id)
if task not in _HEAD_TO_AUTOMODELS:
raise ValueError(
f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
)
if task == "text2text-generation":
raise ValueError("Export of Seq2Seq models is currently disabled.")
auto_model_class = _HEAD_TO_AUTOMODELS[task]
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model.xml",
use_auth_token=oauth_token.token,
)
if len(ov_files) > 0:
raise Exception(f"Model {model_id} is already converted, skipping..")
api = HfApi(token=oauth_token.token)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(
repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]
)
ov_model = eval(auto_model_class).from_pretrained(model_id, export=True)
ov_model.save_pretrained(folder)
"""
if not isinstance(ov_model, OVStableDiffusionPipelineBase):
model = TasksManager.get_model_from_task(task, model_id)
exporter_config_class = TasksManager.get_exporter_config_constructor(
exporter="openvino",
model=model,
task=task,
model_name=model_id,
model_type=model.config.model_type.replace("_", "-"),
)
openvino_config = exporter_config_class(model.config)
inputs = openvino_config.generate_dummy_inputs(framework="pt")
ov_outputs = ov_model(**inputs)
outputs = model(**inputs)
for output_name in ov_outputs:
if isinstance(outputs, torch.Tensor) and not torch.allclose(outputs[output_name], ov_outputs[output_name], atol=1e-3):
raise ValueError(
"The exported model does not have the same outputs as the original model. Export interrupted."
)
"""
new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
folder = Path(folder)
folder_parts = len(folder.parts)
for file_path in folder.glob("**/*"):
name = Path(*file_path.parts[folder_parts:])
if not file_path.is_file() or any(part_name.startswith(".") for part_name in name.parts):
continue
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=str(name),
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("openvino")
card.data.base_model = model_id
card.text = dedent(
f"""
This model was converted to OpenVINO from [`{model_id}`](https://huggingface.co/{model_id}) using [optimum-intel](https://github.com/huggingface/optimum-intel)
via the [export](https://huggingface.co/spaces/echarlaix/openvino-export) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = "{new_repo_id}"
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully exported, find it under your repo {new_repo_url}'"
finally:
shutil.rmtree(folder, ignore_errors=True)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on the hub",
search_type="model",
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username",
)
interface = gr.Interface(
fn=export,
inputs=[
model_id,
private_repo,
],
outputs=[
gr.Markdown(label="output"),
],
title="Export your model to OpenVINO",
description="This space converts your model to the OpenVINO format using [optimum-intel](https://huggingface.co/docs/optimum/main/intel/openvino/inference) The resulting model will then be pushed on the Hub under your HF user namespace",
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()