File size: 6,555 Bytes
9506213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cbd808
 
 
9506213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cbd808
9506213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cbd808
9506213
 
 
 
0cbd808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9506213
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import os
import shutil
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent


from tempfile import TemporaryDirectory

from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
from optimum.exporters import TasksManager

from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
    OVModelForAudioClassification,
    OVModelForCausalLM,
    OVModelForFeatureExtraction,
    OVModelForImageClassification,
    OVModelForMaskedLM,
    OVModelForQuestionAnswering,
    OVModelForSeq2SeqLM,
    OVModelForSequenceClassification,
    OVModelForTokenClassification,
    OVStableDiffusionPipeline,
    OVStableDiffusionXLPipeline,
    OVLatentConsistencyModelPipeline,
    OVModelForPix2Struct,
    OVWeightQuantizationConfig,
)

HF_TOKEN = os.environ.get("HF_TOKEN")


def process_model(
    model_id: str,
    dtype: str,
    private_repo: bool,
    task: str,
    oauth_token: gr.OAuthToken,
):
    if oauth_token.token is None:
        raise ValueError("You must be logged in to use this space")

    model_name = model_id.split("/")[-1]
    username = whoami(oauth_token.token)["name"]
    new_repo_id = f"{username}/{model_name}-openvino-{dtype}"

    task = TasksManager.map_from_synonym(task)
    if task == "auto":
        try:
            task = TasksManager.infer_task_from_model(model_id)
        except Exception as e:
            raise ValueError(
                "The task could not be automatically inferred. "
                f"Please pass explicitely the task with the relevant task from {', '.join(TasksManager.get_all_tasks())}.  {e}"
            )

    task = _TASK_ALIASES.get(task, task)
    if task not in _HEAD_TO_AUTOMODELS:
        raise ValueError(
            f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
        )

    if task == "text2text-generation":
        raise ValueError("Export of Seq2Seq models is currently disabled.")

    auto_model_class = _HEAD_TO_AUTOMODELS[task]
    ov_files = _find_files_matching_pattern(
        model_id,
        pattern=r"(.*)?openvino(.*)?\_model.xml",
        use_auth_token=oauth_token.token,
    )
    export = len(ov_files) == 0
    quantization_config = OVWeightQuantizationConfig(bits=8 if dtype == "int8" else 4)
    api = HfApi(token=oauth_token.token)

    with TemporaryDirectory() as d:
        folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
        os.makedirs(folder)
        try:
            api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])

            ov_model = eval(auto_model_class).from_pretrained(
                model_id, export=export, quantization_config=quantization_config
            )
            ov_model.save_pretrained(folder)

            new_repo_url = api.create_repo(
                repo_id=new_repo_id, exist_ok=True, private=private_repo
            )
            new_repo_id = new_repo_url.repo_id
            print("Repo created successfully!", new_repo_url)

            file_names = (f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)))

            for file in file_names:
                file_path = os.path.join(folder, file)
                try:
                    api.upload_file(
                        path_or_fileobj=file_path,
                        path_in_repo=file,
                        repo_id=new_repo_id,
                    )

                except Exception as e:
                    raise Exception(f"Error uploading file {file_path}: {e}")

            try:
                card = ModelCard.load(model_id, token=oauth_token.token)
            except:
                card = ModelCard("")

            if card.data.tags is None:
                card.data.tags = []
            card.data.tags.append("openvino")
            card.data.base_model = model_id
            card.text = dedent(
                f"""
                This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space.
                
                First make sure you have optimum-intel installed:

                ```bash
                pip install optimum[openvino]
                ```

                To load your model you can do as follows:

                ```python
                from optimum.intel import {auto_model_class}

                model_id = {new_repo_id}
                model = {auto_model_class}.from_pretrained(model_id)
                ```
                """
            )
            card_path = os.path.join(folder, "README.md")
            card.save(card_path)

            api.upload_file(
                path_or_fileobj=card_path,
                path_in_repo="README.md",
                repo_id=new_repo_id,
            )
            return f"This model was successfully quantized, find it under your repo {new_repo_url}'"
        finally:
            shutil.rmtree(folder, ignore_errors=True)


model_id = HuggingfaceHubSearch(
    label="Hub Model ID",
    placeholder="Search for model id on the hub",
    search_type="model",
)
dtype = gr.Dropdown(
    ["int8", "int4"],
    value="int8",
    label="Precision data types",
    filterable=False,
    visible=True,
)
private_repo = gr.Checkbox(
    value=False,
    label="Private Repo",
    info="Create a private repo under your username",
)
task = gr.Textbox(
    value="auto",
    label="Task : can be left to auto, will be automatically inferred",
)
interface = gr.Interface(
    fn=process_model,
    inputs=[
        model_id,
        dtype,
        private_repo,
        task,
    ],
    outputs=[
        gr.Markdown(label="output"),
    ],
    title="Quantize your model with NNCF",
    description="The space takes a model, converts it to the OpenVINO format and applies NNCF weight only quantization. The resulting model will then be pushed on the Hub under your HF user namespace",
    api_name=False,
)

with gr.Blocks() as demo:
    gr.Markdown("You must be logged in to use this space")
    gr.LoginButton(min_width=250)
    interface.render()

demo.launch()