Spaces:
Running
Running
File size: 6,555 Bytes
9506213 0cbd808 9506213 0cbd808 9506213 0cbd808 9506213 0cbd808 9506213 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import shutil
import gradio as gr
from huggingface_hub import HfApi, whoami, ModelCard
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from textwrap import dedent
from tempfile import TemporaryDirectory
from huggingface_hub.file_download import repo_folder_name
from optimum.exporters.tasks import TasksManager
from optimum.intel.utils.constant import _TASK_ALIASES
from optimum.intel.openvino.utils import _HEAD_TO_AUTOMODELS
from optimum.exporters import TasksManager
from optimum.intel.utils.modeling_utils import _find_files_matching_pattern
from optimum.intel import (
OVModelForAudioClassification,
OVModelForCausalLM,
OVModelForFeatureExtraction,
OVModelForImageClassification,
OVModelForMaskedLM,
OVModelForQuestionAnswering,
OVModelForSeq2SeqLM,
OVModelForSequenceClassification,
OVModelForTokenClassification,
OVStableDiffusionPipeline,
OVStableDiffusionXLPipeline,
OVLatentConsistencyModelPipeline,
OVModelForPix2Struct,
OVWeightQuantizationConfig,
)
HF_TOKEN = os.environ.get("HF_TOKEN")
def process_model(
model_id: str,
dtype: str,
private_repo: bool,
task: str,
oauth_token: gr.OAuthToken,
):
if oauth_token.token is None:
raise ValueError("You must be logged in to use this space")
model_name = model_id.split("/")[-1]
username = whoami(oauth_token.token)["name"]
new_repo_id = f"{username}/{model_name}-openvino-{dtype}"
task = TasksManager.map_from_synonym(task)
if task == "auto":
try:
task = TasksManager.infer_task_from_model(model_id)
except Exception as e:
raise ValueError(
"The task could not be automatically inferred. "
f"Please pass explicitely the task with the relevant task from {', '.join(TasksManager.get_all_tasks())}. {e}"
)
task = _TASK_ALIASES.get(task, task)
if task not in _HEAD_TO_AUTOMODELS:
raise ValueError(
f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported"
)
if task == "text2text-generation":
raise ValueError("Export of Seq2Seq models is currently disabled.")
auto_model_class = _HEAD_TO_AUTOMODELS[task]
ov_files = _find_files_matching_pattern(
model_id,
pattern=r"(.*)?openvino(.*)?\_model.xml",
use_auth_token=oauth_token.token,
)
export = len(ov_files) == 0
quantization_config = OVWeightQuantizationConfig(bits=8 if dtype == "int8" else 4)
api = HfApi(token=oauth_token.token)
with TemporaryDirectory() as d:
folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models"))
os.makedirs(folder)
try:
api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"])
ov_model = eval(auto_model_class).from_pretrained(
model_id, export=export, quantization_config=quantization_config
)
ov_model.save_pretrained(folder)
new_repo_url = api.create_repo(
repo_id=new_repo_id, exist_ok=True, private=private_repo
)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
file_names = (f for f in os.listdir(folder) if os.path.isfile(os.path.join(folder, f)))
for file in file_names:
file_path = os.path.join(folder, file)
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("openvino")
card.data.base_model = model_id
card.text = dedent(
f"""
This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and was exported to the OpenVINO format using [optimum-intel](https://github.com/huggingface/optimum-intel) via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space.
First make sure you have optimum-intel installed:
```bash
pip install optimum[openvino]
```
To load your model you can do as follows:
```python
from optimum.intel import {auto_model_class}
model_id = {new_repo_id}
model = {auto_model_class}.from_pretrained(model_id)
```
"""
)
card_path = os.path.join(folder, "README.md")
card.save(card_path)
api.upload_file(
path_or_fileobj=card_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
return f"This model was successfully quantized, find it under your repo {new_repo_url}'"
finally:
shutil.rmtree(folder, ignore_errors=True)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on the hub",
search_type="model",
)
dtype = gr.Dropdown(
["int8", "int4"],
value="int8",
label="Precision data types",
filterable=False,
visible=True,
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username",
)
task = gr.Textbox(
value="auto",
label="Task : can be left to auto, will be automatically inferred",
)
interface = gr.Interface(
fn=process_model,
inputs=[
model_id,
dtype,
private_repo,
task,
],
outputs=[
gr.Markdown(label="output"),
],
title="Quantize your model with NNCF",
description="The space takes a model, converts it to the OpenVINO format and applies NNCF weight only quantization. The resulting model will then be pushed on the Hub under your HF user namespace",
api_name=False,
)
with gr.Blocks() as demo:
gr.Markdown("You must be logged in to use this space")
gr.LoginButton(min_width=250)
interface.render()
demo.launch()
|