Spaces:
Runtime error
Runtime error
Update run.py
Browse files
run.py
CHANGED
@@ -11,6 +11,13 @@ import hashlib
|
|
11 |
import os
|
12 |
import csv
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
def load_hf_dataset(dataset_path, auth_token):
|
15 |
dataset = load_dataset(dataset_path, token=auth_token)
|
16 |
video_paths = dataset
|
@@ -29,27 +36,29 @@ def fast_caption(sys_prompt, usr_prompt, temp, top_p, max_tokens, model, key, en
|
|
29 |
|
30 |
if video_hf and video_hf_auth:
|
31 |
progress_info.append('Begin processing Hugging Face dataset.')
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
)
|
38 |
-
|
39 |
-
for batch in parquet_file.iter_batches(batch_size=1):
|
40 |
df = batch.to_pandas()
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
|
|
|
|
|
|
53 |
return csv_filename, "\n".join(progress_info), None
|
54 |
else:
|
55 |
return "", "No video source selected.", None
|
|
|
11 |
import os
|
12 |
import csv
|
13 |
|
14 |
+
# pip install --no-cache-dir huggingface_hub[hf_transfer]
|
15 |
+
def single_download(repo, fname, token, endpoint):
|
16 |
+
os.environ["TOKIO_WORKER_THREADS"] = "32"
|
17 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
18 |
+
file = hf_hub_download(repo_id=repo, filename=fname, token=token, endpoint=endpoint, repo_type="dataset")
|
19 |
+
return file
|
20 |
+
|
21 |
def load_hf_dataset(dataset_path, auth_token):
|
22 |
dataset = load_dataset(dataset_path, token=auth_token)
|
23 |
video_paths = dataset
|
|
|
36 |
|
37 |
if video_hf and video_hf_auth:
|
38 |
progress_info.append('Begin processing Hugging Face dataset.')
|
39 |
+
os.environ["TOKIO_WORKER_THREADS"] = "8"
|
40 |
+
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
41 |
+
pqfile = hf_hub_download(repo_id=video_hf, filename='data/' + str(parquet_index).zfill(6) + '.parquet', repo_type="dataset", local_dir="/dev/shm", token=video_hf_auth)
|
42 |
+
|
43 |
+
pf = pq.ParquetFile(pqfile)
|
44 |
+
for batch in pf.iter_batches(1):
|
45 |
+
_chunk = []
|
|
|
46 |
df = batch.to_pandas()
|
47 |
+
for binary in df["video"]:
|
48 |
+
if(binary):
|
49 |
+
_v = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False)
|
50 |
+
with open(_v.name, "wb") as f:
|
51 |
+
_ = f.write(binary)
|
52 |
+
_chunk.append(_v.name)
|
53 |
+
|
54 |
+
processor = VideoProcessor(frame_format=frame_format, frame_limit=frame_limit)
|
55 |
+
frames = processor._decode(_v.name)
|
56 |
+
base64_list = processor.to_base64_list(frames)
|
57 |
+
api = AzureAPI(key=key, endpoint=endpoint, model=model, temp=temp, top_p=top_p, max_tokens=max_tokens)
|
58 |
+
caption = api.get_caption(sys_prompt, usr_prompt, base64_list)
|
59 |
+
writer.writerow({'md5': _v.name, 'caption': caption})
|
60 |
+
progress_info.append(f"Processed video with MD5: {md5}")
|
61 |
+
return csv_filename, "\n".join(progress_info), None
|
62 |
return csv_filename, "\n".join(progress_info), None
|
63 |
else:
|
64 |
return "", "No video source selected.", None
|