Spaces:
Running
Running
File size: 2,208 Bytes
5b0a718 d9eecfa cefa8e3 3814e1b c4a5c8e cefa8e3 5b0a718 cefa8e3 3814e1b 5b0a718 3814e1b d9eecfa 3814e1b 5b0a718 3814e1b cefa8e3 5b0a718 3814e1b cefa8e3 d9eecfa 5b0a718 cefa8e3 3814e1b d9eecfa 5b0a718 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import os
os.system('pip uninstall vidfetch -y')
os.system('pip install -U https://github.com/dailingx/VidFetch/archive/master.zip')
os.system('pip install --upgrade google-api-python-client')
os.system('pip install pandas')
os.system('pip install --upgrade youtube-dl')
# os.system('wget https://yt-dl.org/downloads/latest/youtube-dl -O /usr/local/bin/youtube-dl')
# os.system('chmod a+rx /usr/local/bin/youtube-dl')
import sys
import gradio as gr
from vidfetch.website.youtube import YoutubeVideoDataset
import pandas as pd
from pandas.api.types import is_numeric_dtype
def fetch(
kw_file,
dev_key: str,
hf_token: str,
hf_ds_repo_id: str,
key_word: str = None
):
df = pd.read_csv(kw_file.name)
if len(df['keyword']) <= 0:
return 'no keyword'
success_kw = ''
for index, value in df['keyword'].items():
if 'num' in df.columns:
video_max_num = df['num'][index]
else:
video_max_num = 1
youtube_video_dataset = YoutubeVideoDataset(
root_dir="./",
google_cloud_developer_key=dev_key,
search_keyword=value,
video_max_num=video_max_num,
hf_token=hf_token,
hf_ds_repo_id=hf_ds_repo_id
)
youtube_video_dataset.download()
success_kw = success_kw + value
return success_kw
with gr.Blocks() as demo:
gr.Markdown('''OpenVideo Youtube fetch demo''')
with gr.Row():
with gr.Column():
# kw_input_text = gr.Text(label='Keyword')
kw_input_file = gr.File(label="Upload CSV File, Include Columns: keyword, num, ...")
dev_key_input_text = gr.Text(label='Google Cloud Developer Key')
hf_token_input_text = gr.Text(label='HF Token')
hf_ds_repo_id_text = gr.Text(label='HF Dataset Repo ID, like: OpenVideo/YouTube-Commons-5G-Raw')
fetch_btn = gr.Button("Fetch")
result = gr.Text()
fetch_btn.click(fn=fetch, inputs=[kw_input_file, dev_key_input_text, hf_token_input_text, hf_ds_repo_id_text],
outputs=[result])
if __name__ == "__main__":
demo.queue(max_size=1)
demo.launch(share=False, max_threads=1)
|