File size: 6,881 Bytes
5516bfe
 
 
 
 
 
 
 
 
0159d1a
5516bfe
 
 
0159d1a
5516bfe
 
 
 
0159d1a
5516bfe
0159d1a
5516bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e134697
5516bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5674243
 
5516bfe
 
 
 
 
 
 
edb3e83
5516bfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 Statistics and Machine Learning Research Group at HKUST. All rights reserved.
"""A simple shell chatbot implemented with lmflow APIs.
"""
import logging
import json
import sys
import warnings
import gradio as gr
from dataclasses import dataclass, field
from transformers import HfArgumentParser
from typing import Optional

from lmflow.datasets.dataset import Dataset
from lmflow.pipeline.auto_pipeline import AutoPipeline
from lmflow.models.auto_model import AutoModel
from lmflow.args import ModelArguments, DatasetArguments, AutoArguments

MAX_BOXES = 20

logging.disable(logging.ERROR)
warnings.filterwarnings("ignore")

title = """
<h1 align="center">LMFlow-CHAT</h1>
<link rel="stylesheet" href="/path/to/styles/default.min.css">
<script src="/path/to/highlight.min.js"></script>
<script>hljs.highlightAll();</script>

<img src="https://optimalscale.github.io/LMFlow/_static/logo.png" alt="LMFlow" style="width: 30%; min-width: 60px; display: block; margin: auto; background-color: transparent;">

<p>LMFlow is in extensible, convenient, and efficient toolbox for finetuning large machine learning models, designed to be user-friendly, speedy and reliable, and accessible to the entire community.</p>

<p>We have thoroughly tested this toolkit and are pleased to make it available under <a class="reference external" href="https://github.com/OptimalScale/LMFlow">Github</a>.</p>
"""
css = """
#user {                                                                         
    float: right;
    position:relative;
    right:5px;
    width:auto;
    min-height:32px;
    max-width: 60%
    line-height: 32px;
    padding: 2px 8px;
    font-size: 14px;
    background:	#9DC284;
    border-radius:5px; 
    margin:10px 0px;
}
                                             
#chatbot {                                                                      
    float: left;
    position:relative;
    right:5px;
    width:auto;
    min-height:32px;
    max-width: 60%
    line-height: 32px;
    padding: 2px 8px;
    font-size: 14px;
    background:#7BA7D7;
    border-radius:5px; 
    margin:10px 0px;
}
"""


@dataclass
class ChatbotArguments:
    prompt_structure: Optional[str] = field(
        default="A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: {input_text}###Assistant:",
        metadata={
            "help": "prompt structure given user's input text"
        },
    )
    end_string: Optional[str] = field(
        default="#",
        metadata={
            "help": "end string mark of the chatbot's output"
        },
    )
    max_new_tokens: Optional[int] = field(
        default=200,
        metadata={
            "help": "maximum number of generated tokens"
        },
    )
    temperature: Optional[float] = field(
        default=0.7,
        metadata={
            "help": "higher this value, more random the model output"
        },
    )


def main():
    pipeline_name = "inferencer"
    PipelineArguments = AutoArguments.get_pipeline_args_class(pipeline_name)

    parser = HfArgumentParser((
        ModelArguments,
        PipelineArguments,
        ChatbotArguments,
    ))
    model_args, pipeline_args, chatbot_args = (
        parser.parse_args_into_dataclasses()
    )
    model_args.model_name_or_path = "pinkmanlove/llama-7b-hf"
    model_args.lora_model_path = "./robin-7b"
    #pipeline_args.device = 'cpu'
    with open ("configs/ds_config_chatbot.json", "r") as f:
        ds_config = json.load(f)

    model = AutoModel.get_model(
        model_args,
        tune_strategy='none',
        ds_config=ds_config,
        device=pipeline_args.device)

    # We don't need input data, we will read interactively from stdin
    data_args = DatasetArguments(dataset_path=None)
    dataset = Dataset(data_args)

    inferencer = AutoPipeline.get_pipeline(
        pipeline_name=pipeline_name,
        model_args=model_args,
        data_args=data_args,
        pipeline_args=pipeline_args,
    )

    # Chats
    model_name = model_args.model_name_or_path
    if model_args.lora_model_path is not None:
        model_name += f" + {model_args.lora_model_path}"


    # context = (
    #     "You are a helpful assistant who follows the given instructions"
    #     " unconditionally."
    # )


    end_string = chatbot_args.end_string
    prompt_structure = chatbot_args.prompt_structure


    token_per_step = 4


    def chat_stream( context, query: str, history= None, **kwargs):
        if history is None:
            history = []

        print_index = 0
        context += prompt_structure.format(input_text=query)
        context = context[-model.get_max_length():] 
        input_dataset = dataset.from_dict({
            "type": "text_only",
            "instances": [ { "text": context } ]
        })
        for response, flag_break in inferencer.stream_inference(context=context, model=model, max_new_tokens=chatbot_args.max_new_tokens, 
                                        token_per_step=token_per_step, temperature=chatbot_args.temperature,
                                        end_string=end_string, input_dataset=input_dataset):
            delta = response[print_index:]
            seq = response
            print_index = len(response)
            
            yield delta, history + [(query, seq)]
            if flag_break:
                context += response + "\n"
                break




    def predict(input, history=None): 
        try:
            global context
            context = ""
        except SyntaxError:
            pass

        if history is None:
            history = []
        for response, history in chat_stream(context, input, history):
            updates = []
            for query, response in history:
                updates.append(gr.update(visible=True, value="" + query))
                updates.append(gr.update(visible=True, value="" + response))
            if len(updates) < MAX_BOXES:
                updates = updates + [gr.Textbox.update(visible=False)] * (MAX_BOXES - len(updates))
            yield [history] + updates





    with gr.Blocks(css=css) as demo:
        gr.HTML(title)
        state = gr.State([])
        text_boxes = []
        for i in range(MAX_BOXES):
            if i % 2 == 0:
                text_boxes.append(gr.Markdown(visible=False, label="Q:", elem_id="user"))
            else:
                text_boxes.append(gr.Markdown(visible=False, label="A:", elem_id="chatbot"))

        txt = gr.Textbox(
            show_label=False,
            placeholder="Enter text and press send.",
        )
        button = gr.Button("Send")

        button.click(predict, [txt, state], [state] + text_boxes)
        demo.queue().launch()




if __name__ == "__main__":
    main()