Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_chat import message | |
from langchain.document_loaders.csv_loader import CSVLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import CTransformers | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import sys | |
st.title("Chat with csv using Open Source Inference point") | |
DB_FAISS_PATH = "vectorstore/db_faiss" | |
loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','}) | |
data = loader.load() | |
print(data) | |
# Split the text into Chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) | |
text_chunks = text_splitter.split_documents(data) | |
print(len(text_chunks)) | |
# Download Sentence Transformers Embedding From Hugging Face | |
embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2') | |
# COnverting the text Chunks into embeddings and saving the embeddings into FAISS Knowledge Base | |
docsearch = FAISS.from_documents(text_chunks, embeddings) | |
docsearch.save_local(DB_FAISS_PATH) | |
#query = "What is the value of GDP per capita of Finland provided in the data?" | |
#docs = docsearch.similarity_search(query, k=3) | |
#print("Result", docs) | |
from transformers import pipeline | |
pipe = pipeline("text-generation",model="mistralai/Mistral-7B-v0.1",model_type="llama",max_new_tokens=512,temperature=0.1 ) | |
qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever()) | |
# Insert a chat message container. | |
with st.chat_message("user"): | |
st.write("Hello π") | |
st.line_chart(np.random.randn(30, 3)) | |
# Display a chat input widget. | |
st.chat_input("Say something") | |
while True: | |
chat_history = [] | |
#query = "What is the value of GDP per capita of Finland provided in the data?" | |
query = input(f"Input Prompt: ") | |
if query == 'exit': | |
print('Exiting') | |
sys.exit() | |
if query == '': | |
continue | |
result = qa({"question":query, "chat_history":chat_history}) | |
print("Response: ", result['answer']) |