Spaces:
Runtime error
Runtime error
import streamlit as st | |
from streamlit_chat import message | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import CTransformers | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
import sys | |
import tempfile | |
# Initialize the CSVLoader to load the uploaded CSV file | |
from langchain.document_loaders.csv_loader import CSVLoader | |
DB_FAISS_PATH = 'vectorstore/db_faiss' | |
from transformers import pipeline | |
pipe = pipeline("text-generation",model="mistralai/Mistral-7B-v0.1",model_type="llama",max_new_tokens=512,temperature=0.1 ) | |
# Display the title of the web page | |
st.title("Chat with CSV using open source LLM Inference Point π¦π¦") | |
# Display a markdown message with additional information | |
st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with β€οΈ </a></h3>", unsafe_allow_html=True) | |
# Allow users to upload a CSV file | |
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv") | |
if uploaded_file: | |
# Initialize the CSVLoader to load the uploaded CSV file | |
with tempfile.NamedTemporaryFile(delete=False) as tmp_file: | |
tmp_file.write(uploaded_file.getvalue()) | |
tmp_file_path = tmp_file.name | |
# Initialize the CSVLoader to load the uploaded CSV file | |
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={'delimiter': ','}) | |
data = loader.load() | |
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',model_kwargs={'device': 'cpu'}) | |
db = FAISS.from_documents(data, embeddings) | |
db.save_local(DB_FAISS_PATH) | |
llm = load_llm() | |
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever()) | |
def conversational_chat(query): | |
# Maintain and display the chat history | |
result = chain({"question": query, "chat_history": st.session_state['history']}) | |
# Maintain and display the chat history | |
st.session_state['history'].append((query, result["answer"])) | |
return result["answer"] | |
# Maintain and display the chat history | |
if 'history' not in st.session_state: | |
# Maintain and display the chat history | |
st.session_state['history'] = [] | |
# Maintain and display the chat history | |
if 'generated' not in st.session_state: | |
# Maintain and display the chat history | |
st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " π€"] | |
# Maintain and display the chat history | |
if 'past' not in st.session_state: | |
# Maintain and display the chat history | |
st.session_state['past'] = ["Hey ! π"] | |
#container for the chat history | |
response_container = st.container() | |
#container for the user's text input | |
container = st.container() | |
with container: | |
with st.form(key='my_form', clear_on_submit=True): | |
user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input') | |
submit_button = st.form_submit_button(label='Send') | |
if submit_button and user_input: | |
output = conversational_chat(user_input) | |
# Maintain and display the chat history | |
st.session_state['past'].append(user_input) | |
# Maintain and display the chat history | |
st.session_state['generated'].append(output) | |
# Maintain and display the chat history | |
if st.session_state['generated']: | |
with response_container: | |
# Maintain and display the chat history | |
for i in range(len(st.session_state['generated'])): | |
# Maintain and display the chat history | |
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile") | |
# Maintain and display the chat history | |
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs") | |
# Split the text into Chunks | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20) | |
text_chunks = text_splitter.split_documents(data) | |
# COnverting the text Chunks into embeddings and saving the embeddings into FAISS Knowledge Base | |
docsearch = FAISS.from_documents(text_chunks, embeddings) | |
docsearch.save_local(DB_FAISS_PATH) | |
#query = "What is the value of GDP per capita of Finland provided in the data?" | |
#docs = docsearch.similarity_search(query, k=3) | |
#print("Result", docs) | |
qa = ConversationalRetrievalChain.from_llm(llm, retriever=docsearch.as_retriever()) | |
# Insert a chat message container. | |
with st.chat_message("user"): | |
st.write("Hello π") | |
st.line_chart(np.random.randn(30, 3)) | |
# Display a chat input widget. | |
st.chat_input("Say something") | |
while True: | |
chat_history = [] | |
#query = "What is the value of GDP per capita of Finland provided in the data?" | |
query = input(f"Input Prompt: ") | |
if query == 'exit': | |
print('Exiting') | |
sys.exit() | |
if query == '': | |
continue | |
result = qa({"question":query, "chat_history":chat_history}) | |
print("Response: ", result['answer']) |