Orami01 commited on
Commit
42039d6
Β·
1 Parent(s): 1999043

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -9
app.py CHANGED
@@ -9,14 +9,62 @@ from langchain.memory import ConversationBufferMemory
9
  from langchain.chains import ConversationalRetrievalChain
10
  import sys
11
 
12
- st.title("Chat with csv using Open Source Inference point")
13
-
14
-
15
- DB_FAISS_PATH = "vectorstore/db_faiss"
16
- loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','})
17
- data = loader.load()
18
- print(data)
19
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  # Split the text into Chunks
21
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
22
  text_chunks = text_splitter.split_documents(data)
@@ -24,7 +72,8 @@ text_chunks = text_splitter.split_documents(data)
24
  print(len(text_chunks))
25
 
26
  # Download Sentence Transformers Embedding From Hugging Face
27
- embeddings = HuggingFaceEmbeddings(model_name = 'sentence-transformers/all-MiniLM-L6-v2')
 
28
 
29
  # COnverting the text Chunks into embeddings and saving the embeddings into FAISS Knowledge Base
30
  docsearch = FAISS.from_documents(text_chunks, embeddings)
 
9
  from langchain.chains import ConversationalRetrievalChain
10
  import sys
11
 
12
+ st.title("Chat with CSV using open source LLM Inference Point πŸ¦™πŸ¦œ")
13
+ st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with ❀️ </a></h3>", unsafe_allow_html=True)
14
+
15
+ uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
16
+
17
+ if uploaded_file :
18
+ #use tempfile because CSVLoader only accepts a file_path
19
+ with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
20
+ tmp_file.write(uploaded_file.getvalue())
21
+ tmp_file_path = tmp_file.name
22
+
23
+ db = DB_FAISS_PATH = "vectorstore/db_faiss"
24
+ loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','})
25
+ data = loader.load()
26
+ db.save_local(DB_FAISS_PATH)
27
+ llm = load_llm()
28
+
29
+ chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
30
+
31
+ def conversational_chat(query):
32
+ result = chain({"question": query, "chat_history": st.session_state['history']})
33
+ st.session_state['history'].append((query, result["answer"]))
34
+ return result["answer"]
35
+
36
+ if 'history' not in st.session_state:
37
+ st.session_state['history'] = []
38
+
39
+ if 'generated' not in st.session_state:
40
+ st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " πŸ€—"]
41
+
42
+ if 'past' not in st.session_state:
43
+ st.session_state['past'] = ["Hey ! πŸ‘‹"]
44
+
45
+ #container for the chat history
46
+ response_container = st.container()
47
+ #container for the user's text input
48
+ container = st.container()
49
+
50
+ with container:
51
+ with st.form(key='my_form', clear_on_submit=True):
52
+
53
+ user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input')
54
+ submit_button = st.form_submit_button(label='Send')
55
+
56
+ if submit_button and user_input:
57
+ output = conversational_chat(user_input)
58
+
59
+ st.session_state['past'].append(user_input)
60
+ st.session_state['generated'].append(output)
61
+
62
+ if st.session_state['generated']:
63
+ with response_container:
64
+ for i in range(len(st.session_state['generated'])):
65
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
66
+ message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
67
+
68
  # Split the text into Chunks
69
  text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=20)
70
  text_chunks = text_splitter.split_documents(data)
 
72
  print(len(text_chunks))
73
 
74
  # Download Sentence Transformers Embedding From Hugging Face
75
+ embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
76
+ model_kwargs={'device': 'cpu'})
77
 
78
  # COnverting the text Chunks into embeddings and saving the embeddings into FAISS Knowledge Base
79
  docsearch = FAISS.from_documents(text_chunks, embeddings)