Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,21 @@ import streamlit as st
|
|
2 |
from streamlit_chat import message
|
3 |
# Initialize the CSVLoader to load the uploaded CSV file
|
4 |
from langchain.document_loaders.csv_loader import CSVLoader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
@@ -15,9 +30,7 @@ st.title("Chat with CSV using open source LLM Inference Point 🦙🦜")
|
|
15 |
# Display a markdown message with additional information
|
16 |
st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with ❤️ </a></h3>", unsafe_allow_html=True)
|
17 |
|
18 |
-
loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={"delimiter": ","})
|
19 |
# Initialize the CSVLoader to load the uploaded CSV file
|
20 |
-
loader = CSVLoader(file_path="data/2019.csv", encoding="utf-8", csv_args={'delimiter': ','})
|
21 |
data = loader.load()
|
22 |
db.save_local(DB_FAISS_PATH)
|
23 |
llm = load_llm()
|
|
|
2 |
from streamlit_chat import message
|
3 |
# Initialize the CSVLoader to load the uploaded CSV file
|
4 |
from langchain.document_loaders.csv_loader import CSVLoader
|
5 |
+
# Allow users to upload a CSV file
|
6 |
+
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
|
7 |
+
|
8 |
+
if uploaded_file:
|
9 |
+
# Initialize the CSVLoader to load the uploaded CSV file
|
10 |
+
import tempfile
|
11 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
12 |
+
tmp_file.write(uploaded_file.getvalue())
|
13 |
+
tmp_file_path = tmp_file.name
|
14 |
+
|
15 |
+
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={'delimiter': ','})
|
16 |
+
data = loader.load()
|
17 |
+
db.save_local(DB_FAISS_PATH)
|
18 |
+
llm = load_llm()
|
19 |
+
|
20 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
21 |
from langchain.embeddings import HuggingFaceEmbeddings
|
22 |
from langchain.vectorstores import FAISS
|
|
|
30 |
# Display a markdown message with additional information
|
31 |
st.markdown("<h3 style='text-align: center; color: white;'>Built by <a href='https://github.com/AIAnytime'>AI Anytime with ❤️ </a></h3>", unsafe_allow_html=True)
|
32 |
|
|
|
33 |
# Initialize the CSVLoader to load the uploaded CSV file
|
|
|
34 |
data = loader.load()
|
35 |
db.save_local(DB_FAISS_PATH)
|
36 |
llm = load_llm()
|