import streamlit as st from streamlit_chat import message from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.llms import CTransformers from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain import sys import tempfile # Initialize the CSVLoader to load the uploaded CSV file from langchain.document_loaders.csv_loader import CSVLoader DB_FAISS_PATH = 'vectorstore/db_faiss' from transformers import pipeline pipe = pipeline("text-generation",model="mistralai/Mistral-7B-v0.1",model_type="llama",max_new_tokens=512,temperature=0.1 ) # Display the title of the web page st.title("Chat with CSV using open source LLM Inference Point 🦙🦜") # Display a markdown message with additional information st.markdown("

Built by AI Anytime with ❤️

", unsafe_allow_html=True) # Allow users to upload a CSV file uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv") if uploaded_file: # Initialize the CSVLoader to load the uploaded CSV file with tempfile.NamedTemporaryFile(delete=False) as tmp_file: tmp_file.write(uploaded_file.getvalue()) tmp_file_path = tmp_file.name # Initialize the CSVLoader to load the uploaded CSV file loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={'delimiter': ','}) data = loader.load() embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',model_kwargs={'device': 'cpu'}) db = FAISS.from_documents(data, embeddings) db.save_local(DB_FAISS_PATH) llm = load_llm() chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever()) def conversational_chat(query): # Maintain and display the chat history result = chain({"question": query, "chat_history": st.session_state['history']}) # Maintain and display the chat history st.session_state['history'].append((query, result["answer"])) return result["answer"] # Maintain and display the chat history if 'history' not in st.session_state: # Maintain and display the chat history st.session_state['history'] = [] # Maintain and display the chat history if 'generated' not in st.session_state: # Maintain and display the chat history st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " 🤗"] # Maintain and display the chat history if 'past' not in st.session_state: # Maintain and display the chat history st.session_state['past'] = ["Hey ! 👋"] #container for the chat history response_container = st.container() #container for the user's text input container = st.container() with container: with st.form(key='my_form', clear_on_submit=True): user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input') submit_button = st.form_submit_button(label='Send') if submit_button and user_input: output = conversational_chat(user_input) # Maintain and display the chat history st.session_state['past'].append(user_input) # Maintain and display the chat history st.session_state['generated'].append(output) # Maintain and display the chat history if st.session_state['generated']: with response_container: # Maintain and display the chat history for i in range(len(st.session_state['generated'])): # Maintain and display the chat history message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile") # Maintain and display the chat history message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")