|
import os
|
|
import uvicorn
|
|
from fastapi import FastAPI, HTTPException
|
|
from pydantic import BaseModel
|
|
from typing import List, Dict, Union
|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
import torch
|
|
|
|
|
|
|
|
class ProblematicItem(BaseModel):
|
|
text: str
|
|
|
|
class ProblematicList(BaseModel):
|
|
problematics: List[str]
|
|
|
|
class PredictionResponse(BaseModel):
|
|
predicted_class: str
|
|
score: float
|
|
|
|
class PredictionsResponse(BaseModel):
|
|
results: List[Dict[str, Union[str, float]]]
|
|
|
|
|
|
MODEL_NAME = os.getenv("MODEL_NAME", "votre-compte/votre-modele")
|
|
LABEL_0 = os.getenv("LABEL_0", "Classe A")
|
|
LABEL_1 = os.getenv("LABEL_1", "Classe B")
|
|
|
|
|
|
tokenizer = None
|
|
model = None
|
|
|
|
def load_model():
|
|
global tokenizer, model
|
|
try:
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
|
return True
|
|
except Exception as e:
|
|
print(f"Error loading model: {e}")
|
|
return False
|
|
|
|
|
|
def health_check():
|
|
global model, tokenizer
|
|
if model is None or tokenizer is None:
|
|
success = load_model()
|
|
if not success:
|
|
raise HTTPException(status_code=503, detail="Model not available")
|
|
return {"status": "ok", "model": MODEL_NAME}
|
|
|
|
|
|
def predict_single(item: ProblematicItem):
|
|
global model, tokenizer
|
|
|
|
if model is None or tokenizer is None:
|
|
success = load_model()
|
|
if not success:
|
|
print('Error loading the model.')
|
|
|
|
try:
|
|
|
|
inputs = tokenizer(item.text, padding=True, truncation=True, return_tensors="pt")
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
|
predicted_class = torch.argmax(probabilities, dim=1).item()
|
|
confidence_score = probabilities[0][predicted_class].item()
|
|
|
|
|
|
predicted_label = LABEL_0 if predicted_class == 0 else LABEL_1
|
|
|
|
return PredictionResponse(predicted_class=predicted_label, score=confidence_score)
|
|
|
|
except Exception as e:
|
|
print(f"Error during prediction: {str(e)}")
|
|
|
|
def predict_batch(items: ProblematicList):
|
|
global model, tokenizer
|
|
|
|
if model is None or tokenizer is None:
|
|
success = load_model()
|
|
if not success:
|
|
print("Model not available")
|
|
|
|
try:
|
|
results = []
|
|
|
|
|
|
batch_size = 8
|
|
for i in range(0, len(items.problematics), batch_size):
|
|
batch_texts = items.problematics[i:i+batch_size]
|
|
|
|
|
|
inputs = tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt")
|
|
|
|
|
|
with torch.no_grad():
|
|
outputs = model(**inputs)
|
|
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
|
predicted_classes = torch.argmax(probabilities, dim=1).tolist()
|
|
confidence_scores = [probabilities[j][predicted_classes[j]].item() for j in range(len(predicted_classes))]
|
|
|
|
|
|
for j, (pred_class, score) in enumerate(zip(predicted_classes, confidence_scores)):
|
|
predicted_label = LABEL_0 if pred_class == 0 else LABEL_1
|
|
results.append({
|
|
"text": batch_texts[j],
|
|
"class": predicted_label,
|
|
"score": score
|
|
})
|
|
|
|
return PredictionsResponse(results=results)
|
|
|
|
except Exception as e:
|
|
print(f"Error during prediction: {str(e)}") |