|
import os |
|
import time |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.language_models.chat_models import BaseChatModel |
|
from .config import settings |
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
_llm_cache = {} |
|
|
|
def get_llm(model_name: str) -> BaseChatModel: |
|
""" |
|
Returns an initialized LangChain chat model based on the provided name. |
|
Caches initialized models. |
|
""" |
|
global _llm_cache |
|
if model_name in _llm_cache: |
|
return _llm_cache[model_name] |
|
|
|
logger.info(f"Initializing LLM: {model_name}") |
|
|
|
if model_name.startswith("gemini"): |
|
if not settings.gemini_api_key: |
|
raise ValueError("GEMINI_API_KEY is not configured.") |
|
try: |
|
|
|
llm = ChatGoogleGenerativeAI(model=model_name) |
|
_llm_cache[model_name] = llm |
|
logger.info(f"Initialized Google Generative AI model: {model_name}") |
|
return llm |
|
except Exception as e: |
|
logger.error(f"Failed to initialize Gemini model '{model_name}': {e}", exc_info=True) |
|
raise RuntimeError(f"Could not initialize Gemini model: {e}") from e |
|
|
|
elif model_name.startswith("gpt"): |
|
if not settings.openai_api_key: |
|
raise ValueError("OPENAI_API_KEY is not configured.") |
|
try: |
|
|
|
|
|
llm = ChatOpenAI(model=model_name, api_key=settings.openai_api_key) |
|
_llm_cache[model_name] = llm |
|
logger.info(f"Initialized OpenAI model: {model_name}") |
|
return llm |
|
except Exception as e: |
|
logger.error(f"Failed to initialize OpenAI model '{model_name}': {e}", exc_info=True) |
|
raise RuntimeError(f"Could not initialize OpenAI model: {e}") from e |
|
|
|
|
|
|
|
else: |
|
logger.error(f"Unsupported model provider for model name: {model_name}") |
|
raise ValueError(f"Model '{model_name}' is not supported or configuration is missing.") |
|
|
|
def invoke_llm(var,parameters): |
|
try: |
|
return var.invoke(parameters) |
|
except Exception as e: |
|
print(f"Error during .invoke : {e} \nwaiting 60 seconds") |
|
time.sleep(60) |
|
print("Waiting is finished") |
|
return var.invoke(parameters) |
|
|
|
|
|
|
|
|