import os import requests from contextlib import asynccontextmanager from bs4 import BeautifulSoup from fastapi import FastAPI, HTTPException from neo4j import GraphDatabase, basic_auth import google.generativeai as genai import logging # Import logging module # --- Logging Configuration --- # Basic logger configuration to display INFO messages and above. logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Create a logger instance for this module # --- Environment Variable Configuration --- NEO4J_URI = os.getenv("NEO4J_URI") NEO4J_USER = os.getenv("NEO4J_USER") NEO4J_PASSWORD = os.getenv("NEO4J_PASSWORD") # Validation of essential configurations if not NEO4J_URI or not NEO4J_USER or not NEO4J_PASSWORD: logger.critical("CRITICAL ERROR: NEO4J_URI, NEO4J_USER, and NEO4J_PASSWORD environment variables must be set.") # --- Application Lifecycle (Startup/Shutdown) --- @asynccontextmanager async def lifespan(app: FastAPI): """Handles startup and shutdown events.""" # Initialize Gemini Client logger.info("Initializing Gemini client...") if genai: try: # Assuming GEMINI_API_KEY is set in environment or loaded via settings api_key = os.getenv("GEMINI_API_KEY") or getattr(settings, "GEMINI_API_KEY", None) if not api_key: raise ValueError("GEMINI_API_KEY not found in environment or settings.") else: genai.configure(api_key=api_key) logger.info("Gemini client configured successfully.") except Exception as e: logger.error(f"Failed to configure Gemini client: {e}", exc_info=True) else: logger.warning("Gemini library not imported. Endpoints requiring Gemini will not work.") yield # API runs here # --- Shutdown --- logger.info("API shutting down...") logger.info("API shutdown complete.") # Initialize FastAPI application app = FastAPI( title="Neo4j Importer", description="API to fetch documents, summarize it with Gemini, and add it to Neo4j.", version="1.0.0", lifespan=lifespan ) # --- Utility Functions (Adapted from your script) --- def get_content(number: str, node_type: str) -> str: """Fetches raw HTML content from Arxiv or other sources.""" redirect_links = { "Patent": f"https://patents.google.com/patent/{number}/en", "ResearchPaper": f"https://arxiv.org/abs/{number}" } url = redirect_links.get(node_type) if not url: logger.warning(f"Unknown node type: {node_type} for number {number}") return "" try: response = requests.get(url) response.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX) return response.content.decode('utf-8', errors='replace').replace("\n", "") except requests.exceptions.RequestException as e: logger.error(f"Request error for {node_type} number: {number} at URL {url}: {e}") return "" except Exception as e: logger.error(f"An unexpected error occurred in get_content for {number}: {e}") return "" def extract_arxiv(rp_number: str, node_type: str = "ResearchPaper") -> dict: """Extracts information from an Arxiv research paper and generates a summary.""" rp_data = { "document": f"Arxiv {rp_number}", # ID for the paper "title": "Error fetching content or content not found", "abstract": "Error fetching content or content not found", "summary": "Summary not yet generated" # Default summary } raw_content = get_content(rp_number, node_type) if not raw_content: logger.warning(f"No content fetched for Arxiv ID: {rp_number}") return rp_data # Returns default error data try: soup = BeautifulSoup(raw_content, 'html.parser') # Extract Title title_tag = soup.find('h1', class_='title') if title_tag and title_tag.find('span', class_='descriptor'): title_text = title_tag.find('span', class_='descriptor').next_sibling if title_text and isinstance(title_text, str): rp_data["title"] = title_text.strip() else: rp_data["title"] = title_tag.get_text(separator=" ", strip=True).replace("Title:", "").strip() elif title_tag : # Fallback if the span descriptor is not there but h1.title exists rp_data["title"] = title_tag.get_text(separator=" ", strip=True).replace("Title:", "").strip() # Extract Abstract abstract_tag = soup.find('blockquote', class_='abstract') if abstract_tag: abstract_text = abstract_tag.get_text(strip=True) if abstract_text.lower().startswith('abstract'): # Check if "abstract" (case-insensitive) is at the beginning # Find the first occurrence of ':' after "abstract" or just remove "abstract" prefix prefix_end = abstract_text.lower().find('abstract') + len('abstract') if prefix_end < len(abstract_text) and abstract_text[prefix_end] == ':': prefix_end += 1 # Include the colon in removal abstract_text = abstract_text[prefix_end:].strip() rp_data["abstract"] = abstract_text # Mark if title or abstract are still not found if rp_data["title"] == "Error fetching content or content not found" and not title_tag: rp_data["title"] = "Title not found on page" if rp_data["abstract"] == "Error fetching content or content not found" and not abstract_tag: rp_data["abstract"] = "Abstract not found on page" except Exception as e: logger.error(f"Failed to parse content for Arxiv ID {rp_number}: {e}") # Generate summary with Gemini API if available and abstract exists if rp_data["abstract"] and \ not rp_data["abstract"].startswith("Error fetching content") and \ not rp_data["abstract"].startswith("Abstract not found"): prompt = f"""You are a 3GPP standardization expert. Summarize the key information in the provided document in simple technical English relevant to identifying potential Key Issues. Focus on challenges, gaps, or novel aspects. Here is the document: {rp_data['abstract']}""" try: model = genai.GenerativeModel("gemini-2.5-flash-preview-05-20") response = model.generate_content(prompt) rp_data["summary"] = response.text logger.info(f"Summary generated for Arxiv ID: {rp_number}") except Exception as e: logger.error(f"Error generating summary with Gemini for Arxiv ID {rp_number}: {e}") rp_data["summary"] = "Error generating summary (API failure)" else: rp_data["summary"] = "Summary not generated (Abstract unavailable or problematic)" return rp_data def extract_google_patents(patent_number: str, node_type: str = "Patent"): """ Extracts information from a Google Patents page with robust error handling. """ # Initialize a dictionary with default error messages for consistency. patent_data = { "number": f"{patent_number}", "title": "Error fetching content or content not found", "description": "Error fetching content or content not found", "claim": "Error fetching content or content not found", "summary": "Summary not yet generated" # Default summary } # Use the generic get_content function to fetch the raw page content. raw_content = get_content(patent_number, node_type) if not raw_content: logger.warning(f"No content fetched for Patent ID: {patent_number}") return patent_data # Return the dictionary with default error messages. try: # Let BeautifulSoup handle the decoding from raw bytes. soup = BeautifulSoup(raw_content, 'html.parser') # --- Extract Title --- title_tag = soup.find('meta', attrs={'name': 'DC.title'}) if title_tag and title_tag.get('content'): patent_data["title"] = title_tag['content'].strip() else: # Fallback to finding the title in an

tag. title_h1 = soup.find('h1', id='title') if title_h1: patent_data["title"] = title_h1.get_text(strip=True) # --- Extract Description --- description_section = soup.find('section', itemprop='description') if description_section: # Remove unnecessary nested spans to clean the output. for src_text in description_section.find_all('span', class_='google-src-text'): src_text.decompose() patent_data["description"] = description_section.get_text(separator=' ', strip=True) # --- Extract Claims --- claims_section = soup.find('section', itemprop='claims') if claims_section: # Remove unnecessary nested spans here as well. for src_text in claims_section.find_all('span', class_='google-src-text'): src_text.decompose() patent_data["claim"] = claims_section.get_text(separator=' ', strip=True) # Update status message if specific sections were not found on the page. if patent_data["title"] == "Error fetching content or content not found": patent_data["title"] = "Title not found on page" if patent_data["description"] == "Error fetching content or content not found": patent_data["description"] = "Description not found on page" if patent_data["claim"] == "Error fetching content or content not found": patent_data["claim"] = "Claim not found on page" except Exception as e: # Catch any unexpected errors during the parsing process. logger.error(f"Failed to parse content for Patent ID {patent_number}: {e}") # Generate summary with Gemini API if available and abstract exists if patent_data["description"] and \ not patent_data["description"].startswith("Error fetching content") and \ not patent_data["description"].startswith("Description not found"): prompt = f"""You are a 3GPP standardization expert. Summarize the key information in the provided document in simple technical English relevant to identifying potential Key Issues. Focus on challenges, gaps, or novel aspects. Here is the document: {patent_data['description']}""" try: model = genai.GenerativeModel("gemini-2.5-flash-preview-05-20") response = model.generate_content(prompt) patent_data["summary"] = response.text logger.info(f"Summary generated for Patent ID: {patent_number}") except Exception as e: logger.error(f"Error generating summary with Gemini for Patent ID {patent_number}: {e}") patent_data["summary"] = "Error generating summary (API failure)" else: rp_data["summary"] = "Summary not generated (Description unavailable or problematic)" return patent_data def add_nodes_to_neo4j(driver, data_list: list, node_type: str): """Adds a list of nodes to Neo4j in a single transaction.""" if not data_list: logger.warning("No data provided to add_nodes_to_neo4j.") return 0 query = ( "UNWIND $data as properties " f"CREATE (n:{node_type}) " "SET n = properties" ) # query = ( # f"UNWIND $data as properties " # f"MERGE (n:{node_type} {{arxiv_id: properties.arxiv_id}}) " # Use MERGE for idempotency # f"ON CREATE SET n = properties " # f"ON MATCH SET n += properties" # Update properties if the node already exists # ) try: with driver.session(database="neo4j") as session: # Specify database if not default result = session.execute_write(lambda tx: tx.run(query, data=data_list).consume()) nodes_created = result.counters.nodes_created if nodes_created > 0: logger.info(f"{nodes_created} new {node_type} node(s) added successfully.") return nodes_created # Return the number of nodes actually created except Exception as e: logger.error(f"Neo4j Error - Failed to add/update {node_type} nodes: {e}") raise HTTPException(status_code=500, detail=f"Neo4j database error: {e}") # --- FastAPI Endpoint --- # API state check route @app.get("/") def read_root(): return {"status": "ok"} @app.post("/add_research_paper/{arxiv_id}", status_code=201) # 201 Created for successful creation async def add_single_research_paper(arxiv_id: str): """ Fetches a research paper from Arxiv by its ID, extracts information, generates a summary, and adds/updates it as a 'ResearchPaper' node in Neo4j. """ node_type = "ResearchPaper" logger.info(f"Processing request for Arxiv ID: {arxiv_id}") if not NEO4J_URI or not NEO4J_USER or not NEO4J_PASSWORD: logger.error("Neo4j database connection details are not configured on the server.") raise HTTPException(status_code=500, detail="Neo4j database connection details are not configured on the server.") # Step 1: Extract paper data paper_data = extract_arxiv(arxiv_id, node_type) if paper_data["title"].startswith("Error fetching content") or paper_data["title"] == "Title not found on page": logger.warning(f"Could not fetch or parse content for Arxiv ID {arxiv_id}. Title: {paper_data['title']}") raise HTTPException(status_code=404, detail=f"Could not fetch or parse content for Arxiv ID {arxiv_id}. Title: {paper_data['title']}") # Step 2: Add/Update in Neo4j driver_instance = None # Initialize for the finally block try: auth_token = basic_auth(NEO4J_USER, NEO4J_PASSWORD) driver_instance = GraphDatabase.driver(NEO4J_URI, auth=auth_token) driver_instance.verify_connectivity() logger.info("Successfully connected to Neo4j.") nodes_created_count = add_nodes_to_neo4j(driver_instance, [paper_data], node_type) if nodes_created_count > 0 : logger.info(f"Research paper {arxiv_id} was successfully added to Neo4j.") status_code_response = 201 # Created # Note: FastAPI uses the status_code from the decorator or HTTPException. # This custom status_code_response is for the JSON body if needed, but the actual HTTP response status # will be 201 (from decorator) unless an HTTPException overrides it or we change the decorator based on logic. # For simplicity here, we'll return it in the body and let the decorator's 201 stand if no error. # A more advanced setup might change the response status dynamically. return {"data": paper_data} except HTTPException as e: # Re-raise HTTPExceptions logger.error(f"HTTPException during Neo4j operation for {arxiv_id}: {e.detail}") raise e except Exception as e: logger.error(f"An unexpected error occurred during Neo4j operation for {arxiv_id}: {e}", exc_info=True) raise HTTPException(status_code=500, detail=f"An unexpected server error occurred: {e}") finally: if driver_instance: driver_instance.close() logger.info("Neo4j connection closed.") @app.post("/add_patent/{patent_id}", status_code=201) # 201 Created for successful creation async def add_single_patent(patent_id: str): """ Fetches a patent from Google Patents by its ID, extracts information, generates a summary, and adds/updates it as a 'Patent' node in Neo4j. """ node_type = "Patent" logger.info(f"Processing request for Patent ID: {patent_id}") if not NEO4J_URI or not NEO4J_USER or not NEO4J_PASSWORD: logger.error("Neo4j database connection details are not configured on the server.") raise HTTPException(status_code=500, detail="Neo4j database connection details are not configured on the server.") # Step 1: Extract patent data patent_data = extract_google_patents(patent_id, node_type) if patent_data["title"].startswith("Error fetching content") or patent_data["title"] == "Title not found on page": logger.warning(f"Could not fetch or parse content for Patent ID {patent_id}. Title: {patent_data['title']}") raise HTTPException(status_code=404, detail=f"Could not fetch or parse content for Patent ID {patent_id}. Title: {patent_data['title']}") # Step 2: Add/Update in Neo4j driver_instance = None # Initialize for the finally block try: auth_token = basic_auth(NEO4J_USER, NEO4J_PASSWORD) driver_instance = GraphDatabase.driver(NEO4J_URI, auth=auth_token) driver_instance.verify_connectivity() logger.info("Successfully connected to Neo4j.") nodes_created_count = add_nodes_to_neo4j(driver_instance, [patent_data], node_type) if nodes_created_count > 0 : logger.info(f"Patent {patent_id} was successfully added to Neo4j.") status_code_response = 201 # Created # Note: FastAPI uses the status_code from the decorator or HTTPException. # This custom status_code_response is for the JSON body if needed, but the actual HTTP response status # will be 201 (from decorator) unless an HTTPException overrides it or we change the decorator based on logic. # For simplicity here, we'll return it in the body and let the decorator's 201 stand if no error. # A more advanced setup might change the response status dynamically. return {"data": patent_data} except HTTPException as e: # Re-raise HTTPExceptions logger.error(f"HTTPException during Neo4j operation for {patent_id}: {e.detail}") raise e except Exception as e: logger.error(f"An unexpected error occurred during Neo4j operation for {patent_id}: {e}", exc_info=True) raise HTTPException(status_code=500, detail=f"An unexpected server error occurred: {e}") finally: if driver_instance: driver_instance.close() logger.info("Neo4j connection closed.")