File size: 10,649 Bytes
ec6d5f9
 
731c049
7c1cffe
ec6d5f9
 
 
96ed966
 
ec6d5f9
 
 
 
 
 
ead7603
ec6d5f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ead7603
ec6d5f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96ed966
 
 
 
 
 
 
 
09d2b58
 
 
 
 
 
ec6d5f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96ed966
ec6d5f9
96ed966
ec6d5f9
34d4445
ec6d5f9
 
 
 
 
bee2a16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6d5f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import logging
import re
import time
from typing import List, Dict, Any, Optional
from langgraph.graph import StateGraph, END
from langgraph.checkpoint.memory import MemorySaver # Or SqliteSaver etc.

from pydantic import BaseModel, Field

from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
from langchain_core.output_parsers import StrOutputParser, JsonOutputParser

from .config import settings
from .schemas import PlannerState, KeyIssue, GraphConfig # Import schemas
from .prompts import get_initial_planner_prompt, KEY_ISSUE_STRUCTURING_PROMPT
from .llm_interface import get_llm, invoke_llm
from .graph_operations import (
    generate_cypher_auto, generate_cypher_guided,
    retrieve_documents, evaluate_documents
)
from .processing import process_documents

logger = logging.getLogger(__name__)

# --- Graph Nodes ---

def start_planning(state: PlannerState) -> Dict[str, Any]:
    """Generates the initial plan based on the user query."""
    logger.info("Node: start_planning")
    user_query = state['user_query']
    if not user_query:
        return {"error": "User query is empty."}

    initial_prompt = get_initial_planner_prompt(settings.plan_method, user_query)
    llm = get_llm(settings.main_llm_model)
    chain = initial_prompt | llm | StrOutputParser()

    try:
        plan_text = invoke_llm(chain,{}) # Prompt already includes query
        logger.debug(f"Raw plan text: {plan_text}")

        # Extract plan steps (simple regex, might need refinement)
        plan_match = re.search(r"Plan:(.*?)<END_OF_PLAN>", plan_text, re.DOTALL | re.IGNORECASE)
        if plan_match:
            plan_steps = [step.strip() for step in re.split(r"\n\s*\d+\.\s*", plan_match.group(1)) if step.strip()]
            logger.info(f"Extracted plan: {plan_steps}")
            return {
                "plan": plan_steps,
                "current_plan_step_index": 0,
                "messages": [AIMessage(content=plan_text)],
                 "step_outputs": {} # Initialize step outputs
            }
        else:
            logger.error("Could not parse plan from LLM response.")
            return {"error": "Failed to parse plan from LLM response.", "messages": [AIMessage(content=plan_text)]}
    except Exception as e:
        logger.error(f"Error during plan generation: {e}", exc_info=True)
        return {"error": f"LLM error during plan generation: {e}"}


def execute_plan_step(state: PlannerState) -> Dict[str, Any]:
    """Executes the current step of the plan (retrieval, processing)."""
    current_index = state['current_plan_step_index']
    plan = state['plan']
    user_query = state['user_query'] # Use original query for context

    if current_index >= len(plan):
        logger.warning("Plan step index out of bounds, attempting to finalize.")
        # This should ideally be handled by the conditional edge, but as a fallback
        return {"error": "Plan execution finished unexpectedly."}

    step_description = plan[current_index]
    logger.info(f"Node: execute_plan_step - Step {current_index + 1}/{len(plan)}: {step_description}")

    # --- Determine Query for Retrieval ---
    # Simple approach: Use step description or original query?
    # Let's use the step description combined with the original query for context.
    query_for_retrieval = f"Regarding the query '{user_query}', focus on: {step_description}"
    logger.info(f"Query for retrieval: {query_for_retrieval}")

    # --- Generate Cypher ---
    cypher_query = ""
    if settings.cypher_gen_method == 'auto':
        cypher_query = generate_cypher_auto(query_for_retrieval)
    elif settings.cypher_gen_method == 'guided':
        cypher_query = generate_cypher_guided(query_for_retrieval, current_index)
    # TODO: Add cypher validation if settings.validate_cypher is True

    # --- Retrieve Documents ---
    retrieved_docs = retrieve_documents(cypher_query)

    # --- Evaluate Documents ---
    evaluated_docs = evaluate_documents(retrieved_docs, query_for_retrieval)

    # --- Process Documents ---
    # Using configured processing steps
    processed_docs_content = process_documents(evaluated_docs, settings.process_steps)

    # --- Store Step Output ---
    # Store the processed content relevant to this step
    step_output = "\n\n".join(processed_docs_content) if processed_docs_content else "No relevant information found for this step."
    current_step_outputs = state.get('step_outputs', {})
    current_step_outputs[current_index] = step_output

    logger.info(f"Finished executing plan step {current_index + 1}. Stored output.")

    return {
        "current_plan_step_index": current_index + 1,
        "messages": [SystemMessage(content=f"Completed plan step {current_index + 1}. Context gathered:\n{step_output[:500]}...")], # Add summary message
        "step_outputs": current_step_outputs
    }

class KeyIssue(BaseModel):
    # define your fields here
    id: int
    description: str

class KeyIssueList(BaseModel):
    key_issues: List[KeyIssue] = Field(description="List of key issues")

class KeyIssueInvoke(BaseModel):
    id: int
    title: str
    description: str
    challenges: List[str]
    potential_impact: Optional[str] = None

def generate_structured_issues(state: PlannerState) -> Dict[str, Any]:
    """Generates the final structured Key Issues based on all gathered context."""
    logger.info("Node: generate_structured_issues")

    user_query = state['user_query']
    step_outputs = state.get('step_outputs', {})

    # --- Combine Context from All Steps ---
    full_context = f"Original User Query: {user_query}\n\n"
    full_context += "Context gathered during planning:\n"
    for i, output in sorted(step_outputs.items()):
        full_context += f"--- Context from Step {i+1} ---\n{output}\n\n"

    if not step_outputs:
        full_context += "No context was gathered during the planning steps.\n"

    logger.info(f"Generating key issues using combined context (length: {len(full_context)} chars).")
    # logger.debug(f"Full Context for Key Issue Generation:\n{full_context}") # Optional: log full context

    # --- Call LLM for Structured Output ---
    issue_llm = get_llm(settings.main_llm_model)
    # Use PydanticOutputParser for robust parsing
    output_parser = JsonOutputParser(pydantic_object=KeyIssueList)

    
    prompt = KEY_ISSUE_STRUCTURING_PROMPT.partial(
        schema=output_parser.get_format_instructions(), # Inject schema instructions if needed by prompt
    )

    chain = prompt | issue_llm | output_parser

    try:
        structured_issues_obj = invoke_llm(chain, {
            "user_query": user_query,
            "context": full_context
        })
        print(f"structured_issues_obj => type : {type(structured_issues_obj)}, value : {structured_issues_obj}")
    
        # If the output is a dict with a key 'key_issues', extract it
        if isinstance(structured_issues_obj, dict) and 'key_issues' in structured_issues_obj:
            issues_data = structured_issues_obj['key_issues']
        else:
            issues_data = structured_issues_obj  # Assume it's already a list of dicts
    
        # Always convert to KeyIssueInvoke objects
        key_issues_list = [KeyIssueInvoke(**issue_dict) for issue_dict in issues_data]
    
        # Ensure IDs are sequential if the LLM didn't assign them correctly
        for i, issue in enumerate(key_issues_list):
            issue.id = i + 1
    
        logger.info(f"Successfully generated {len(key_issues_list)} structured key issues.")
        final_message = f"Generated {len(key_issues_list)} Key Issues based on the query '{user_query}'."
        return {
            "key_issues": key_issues_list,
            "messages": [AIMessage(content=final_message)],
            "error": None
        }
    except Exception as e:
        logger.error(f"Failed to generate or parse structured key issues: {e}", exc_info=True)
        # Attempt to get raw output for debugging if possible
        raw_output = "Could not retrieve raw output."
        try:
             raw_chain = prompt | issue_llm | StrOutputParser()
             raw_output = invoke_llm(raw_chain, {"user_query": user_query, "context": full_context})
             logger.debug(f"Raw output from failed JSON parsing:\n{raw_output}")
        except Exception as raw_e:
             logger.error(f"Could not even get raw output: {raw_e}")
    
        return {"error": f"Failed to generate structured key issues: {e}. Raw output hint: {raw_output[:500]}..."}


# --- Conditional Edges ---

def should_continue_planning(state: PlannerState) -> str:
    """Determines if there are more plan steps to execute."""
    logger.debug("Edge: should_continue_planning")
    if state.get("error"):
        logger.error(f"Error state detected: {state['error']}. Ending execution.")
        return "error_state" # Go to a potential error handling end node

    current_index = state['current_plan_step_index']
    plan_length = len(state.get('plan', []))

    if current_index < plan_length:
        logger.debug(f"Continuing plan execution. Next step index: {current_index}")
        return "continue_execution"
    else:
        logger.debug("Plan finished. Proceeding to final generation.")
        return "finalize"


# --- Build Graph ---
def build_graph():
    """Builds the LangGraph workflow."""
    workflow = StateGraph(PlannerState)

    # Add nodes
    workflow.add_node("start_planning", start_planning)
    workflow.add_node("execute_plan_step", execute_plan_step)
    workflow.add_node("generate_issues", generate_structured_issues)
    # Optional: Add an error handling node
    workflow.add_node("error_node", lambda state: {"messages": [SystemMessage(content=f"Execution failed: {state.get('error', 'Unknown error')}") ]})


    # Define edges
    workflow.set_entry_point("start_planning")
    workflow.add_edge("start_planning", "execute_plan_step") # Assume plan is always generated

    workflow.add_conditional_edges(
        "execute_plan_step",
        should_continue_planning,
        {
            "continue_execution": "execute_plan_step", # Loop back to execute next step
            "finalize": "generate_issues",          # Move to final generation
            "error_state": "error_node"             # Go to error node
        }
    )

    workflow.add_edge("generate_issues", END)
    workflow.add_edge("error_node", END) # End after error

    # Compile the graph with memory (optional)
    # memory = MemorySaver() # Use if state needs persistence between runs
    # app_graph = workflow.compile(checkpointer=memory)
    app_graph = workflow.compile()
    return app_graph