Spaces:
Running
Running
import os | |
import time | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_openai import ChatOpenAI | |
from langchain_core.language_models.chat_models import BaseChatModel | |
from .config import settings | |
import logging | |
logger = logging.getLogger(__name__) | |
# Store initialized models to avoid re-creating them repeatedly | |
_llm_cache = {} | |
def get_llm(model_name: str) -> BaseChatModel: | |
""" | |
Returns an initialized LangChain chat model based on the provided name. | |
Caches initialized models. | |
""" | |
global _llm_cache | |
if model_name in _llm_cache: | |
return _llm_cache[model_name] | |
logger.info(f"Initializing LLM: {model_name}") | |
if model_name.startswith("gemini"): | |
if not settings.gemini_api_key: | |
raise ValueError("GEMINI_API_KEY is not configured.") | |
try: | |
# Use GOOGLE_API_KEY environment variable set in config.py | |
llm = ChatGoogleGenerativeAI(model=model_name) | |
_llm_cache[model_name] = llm | |
logger.info(f"Initialized Google Generative AI model: {model_name}") | |
return llm | |
except Exception as e: | |
logger.error(f"Failed to initialize Gemini model '{model_name}': {e}", exc_info=True) | |
raise RuntimeError(f"Could not initialize Gemini model: {e}") from e | |
elif model_name.startswith("gpt"): | |
if not settings.openai_api_key: | |
raise ValueError("OPENAI_API_KEY is not configured.") | |
try: | |
# Base URL can be added here if using a proxy | |
# base_url = "https://your-proxy-if-needed/" | |
llm = ChatOpenAI(model=model_name, api_key=settings.openai_api_key) # Base URL optional | |
_llm_cache[model_name] = llm | |
logger.info(f"Initialized OpenAI model: {model_name}") | |
return llm | |
except Exception as e: | |
logger.error(f"Failed to initialize OpenAI model '{model_name}': {e}", exc_info=True) | |
raise RuntimeError(f"Could not initialize OpenAI model: {e}") from e | |
# Add other model providers (Anthropic, Groq, etc.) here if needed | |
else: | |
logger.error(f"Unsupported model provider for model name: {model_name}") | |
raise ValueError(f"Model '{model_name}' is not supported or configuration is missing.") | |
def invoke_llm(var,parameters): | |
try: | |
return var.invoke(parameters) | |
except Exception as e: | |
print(f"Error during .invoke : {e} \nwaiting 60 seconds") | |
time.sleep(60) | |
print("Waiting is finished") | |
return var.invoke(parameters) | |
# Example usage (could be called from other modules) | |
# main_llm = get_llm(settings.main_llm_model) | |
# eval_llm = get_llm(settings.eval_llm_model) |