Spaces:
Sleeping
Sleeping
File size: 17,939 Bytes
2131a4c ae5ea44 2131a4c 16c9572 2131a4c 60c02b8 2131a4c 3585f9f ff67b81 64429ce 02cfab5 64429ce 2131a4c ae5ea44 2131a4c 057343e 2131a4c 9e87c9c 2131a4c 4cf827d 2131a4c ae5ea44 2131a4c 3585f9f 2131a4c 3d18b41 2131a4c 3585f9f 2131a4c ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 64429ce ff67b81 2131a4c a31260c 02cfab5 2131a4c ff67b81 3585f9f ff67b81 2131a4c 3585f9f 2131a4c 64429ce 02cfab5 ff67b81 2131a4c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
import langchain
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.document_loaders import UnstructuredPDFLoader,UnstructuredWordDocumentLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import FAISS
from zipfile import ZipFile
import gradio as gr
import openpyxl
import os
import shutil
from langchain.schema import Document
from langchain.text_splitter import RecursiveCharacterTextSplitter
import tiktoken
import secrets
import time
import requests
import tempfile
from groq import Groq
tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
# create the length function
def tiktoken_len(text):
tokens = tokenizer.encode(
text,
disallowed_special=()
)
return len(tokens)
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=750,
chunk_overlap=350,
length_function=tiktoken_len,
separators=["\n\n", "\n", " ", ""]
)
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
foo = Document(page_content='foo is fou!',metadata={"source":'foo source'})
def reset_database(ui_session_id):
session_id = f"PDFAISS-{ui_session_id}"
if 'drive' in session_id:
print("RESET DATABASE: session_id contains 'drive' !!")
return None
try:
shutil.rmtree(session_id)
except:
print(f'no {session_id} directory present')
try:
os.remove(f"{session_id}.zip")
except:
print("no {session_id}.zip present")
return None
def is_duplicate(split_docs,db):
epsilon=0.0
print(f"DUPLICATE: Treating: {split_docs[0].metadata['source'].split('/')[-1]}")
for i in range(min(3,len(split_docs))):
query = split_docs[i].page_content
docs = db.similarity_search_with_score(query,k=1)
_ , score = docs[0]
epsilon += score
print(f"DUPLICATE: epsilon: {epsilon}")
return epsilon < 0.1
def merge_split_docs_to_db(split_docs,db,progress,progress_step=0.1):
progress(progress_step,desc="merging docs")
if len(split_docs)==0:
print("MERGE to db: NO docs!!")
return
filename = split_docs[0].metadata['source']
if is_duplicate(split_docs,db):
print(f"MERGE: Document is duplicated: {filename}")
return
print(f"MERGE: number of split docs: {len(split_docs)}")
batch = 10
for i in range(0, len(split_docs), batch):
progress(i/len(split_docs),desc=f"added {i} chunks of {len(split_docs)} chunks")
db1 = FAISS.from_documents(split_docs[i:i+batch], embeddings)
db.merge_from(db1)
return db
def merge_pdf_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking pdf')
doc = UnstructuredPDFLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def merge_docx_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking docx')
doc = UnstructuredWordDocumentLoader(filename).load()
doc[0].metadata['source'] = filename.split('/')[-1]
split_docs = text_splitter.split_documents(doc)
progress_step+=0.3
progress(progress_step,'docx unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def merge_txt_to_db(filename,db,progress,progress_step=0.1):
progress_step+=0.05
progress(progress_step,'unpacking txt')
with open(filename) as f:
docs = text_splitter.split_text(f.read())
split_docs = [Document(page_content=doc,metadata={'source':filename.split('/')[-1]}) for doc in docs]
progress_step+=0.3
progress(progress_step,'txt unpacked')
return merge_split_docs_to_db(split_docs,db,progress,progress_step)
def unpack_zip_file(filename,db,progress):
with ZipFile(filename, 'r') as zipObj:
contents = zipObj.namelist()
print(f"unpack zip: contents: {contents}")
tmp_directory = filename.split('/')[-1].split('.')[-2]
shutil.unpack_archive(filename, tmp_directory)
if 'index.faiss' in [item.lower() for item in contents]:
db2 = FAISS.load_local(tmp_directory, embeddings, allow_dangerous_deserialization=True)
db.merge_from(db2)
return db
for file in contents:
if file.lower().endswith('.docx'):
db = merge_docx_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.pdf'):
db = merge_pdf_to_db(f"{tmp_directory}/{file}",db,progress)
if file.lower().endswith('.txt'):
db = merge_txt_to_db(f"{tmp_directory}/{file}",db,progress)
return db
def add_files_to_zip(session_id):
zip_file_name = f"{session_id}.zip"
with ZipFile(zip_file_name, "w") as zipObj:
for root, dirs, files in os.walk(session_id):
for file_name in files:
file_path = os.path.join(root, file_name)
arcname = os.path.relpath(file_path, session_id)
zipObj.write(file_path, arcname)
#### UI Functions ####
def embed_files(files,ui_session_id,progress=gr.Progress(),progress_step=0.05):
if ui_session_id not in os.environ['users'].split(', '):
return "README.md", ""
print(files)
progress(progress_step,desc="Starting...")
split_docs=[]
if len(ui_session_id)==0:
ui_session_id = secrets.token_urlsafe(16)
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings, allow_dangerous_deserialization=True)
except:
print(f"SESSION: {session_id} database does not exist, create a FAISS db")
db = FAISS.from_documents([foo], embeddings)
db.save_local(session_id)
print(f"SESSION: {session_id} database created")
print("EMBEDDED, before embeddeding: ",session_id,len(db.index_to_docstore_id))
for file_id,file in enumerate(files):
print("ID : ", file_id, "FILE : ", file)
file_type = file.name.split('.')[-1].lower()
source = file.name.split('/')[-1]
print(f"current file: {source}")
progress(file_id/len(files),desc=f"Treating {source}")
if file_type == 'pdf':
db2 = merge_pdf_to_db(file.name,db,progress)
if file_type == 'txt':
db2 = merge_txt_to_db(file.name,db,progress)
if file_type == 'docx':
db2 = merge_docx_to_db(file.name,db,progress)
if file_type == 'zip':
db2 = unpack_zip_file(file.name,db,progress)
if db2 != None:
db = db2
db.save_local(session_id)
### move file to store ###
progress(progress_step, desc = 'moving file to store')
directory_path = f"{session_id}/store/"
if not os.path.exists(directory_path):
os.makedirs(directory_path)
try:
shutil.move(file.name, directory_path)
except:
pass
### load the updated db and zip it ###
progress(progress_step, desc = 'loading db')
db = FAISS.load_local(session_id,embeddings, allow_dangerous_deserialization=True)
print("EMBEDDED, after embeddeding: ",session_id,len(db.index_to_docstore_id))
progress(progress_step, desc = 'zipping db for download')
add_files_to_zip(session_id)
print(f"EMBEDDED: db zipped")
progress(progress_step, desc = 'db zipped')
return f"{session_id}.zip", ui_session_id, ""
def add_to_db(references,ui_session_id):
files = store_files(references)
return embed_files(files,ui_session_id)
def export_files(references):
files = store_files(references, ret_names=True)
#paths = [file.name for file in files]
return files
def display_docs(docs):
output_str = ''
for i, doc in enumerate(docs):
source = doc.metadata['source'].split('/')[-1]
output_str += f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n*§*§*\n"
return output_str
# def display_docs_modal(docs):
# output_list = []
# for i, doc in enumerate(docs):
# source = doc.metadata['source'].split('/')[-1]
# output_str.append(f"Ref: {i+1}\n{repr(doc.page_content)}\nSource: {source}\n*§*§*\n")
# return output_list
def hide_source():
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False)
def ask_llm(system, user_input):
messages = [
{
"role": "system",
"content": system
},
{
"role": "user",
"content": user_input,
}
]
client = Groq(api_key=os.environ["GROQ_KEY"])
chat_completion = client.chat.completions.create(
messages=messages,
model="llama3-70b-8192",#'mixtral-8x7b-32768',
)
return chat_completion.choices[0].message.content
def ask_llm_stream(system, user_input):
llm_response = ""
client = Groq(api_key=os.environ["GROQ_KEY"])
if user_input is None or user_input == "":
user_input = "What is the introduction of the document about?"
messages = [
{
"role": "system",
"content": system
},
{
"role": "user",
"content": user_input,
}
]
stream = client.chat.completions.create(
messages=messages,
model="mixtral-8x7b-32768",
temperature=0.5,
max_tokens=1024,
top_p=1,
stop=None,
stream=True,
)
for chunk in stream:
llm_response += str(chunk.choices[0].delta.content) if chunk.choices[0].delta.content is not None else ""
yield llm_response
def ask_gpt(query, ui_session_id, history):
print(f"before: {os.environ['prompts']}")
os.environ['prompts'] += ', ' + query
print(f"after: {os.environ['prompts']}")
if ui_session_id not in os.environ['users'].split(', '):
return "Please Login", "", ""
session_id = f"PDFAISS-{ui_session_id}"
try:
db = FAISS.load_local(session_id,embeddings, allow_dangerous_deserialization=True)
print("ASKGPT after loading",session_id,len(db.index_to_docstore_id))
except:
print(f"SESSION: {session_id} database does not exist")
return f"SESSION: {session_id} database does not exist","",""
docs = db.similarity_search(query, k=4)
documents = "\n\n*-*-*-*-*-*\n\n".join(f"Content: {doc.page_content}\n" for doc in docs)
system = f"# Instructions\nTake a deep breath and resonate step by step.\nYou are a helpful standard assistant. Your have only one mission and that consists in answering to the user input based on the **provided documents**. If the answer to the question that is asked by the user isn't contained in the **provided documents**, say so but **don't make up an answer**. I chose you because you can say 'I don't know' so please don't do like the other LLMs and don't define acronyms that aren\'t present in the following **PROVIDED DOCUMENTS** double check if it is present before answering. If some of the information can be useful for the user you can tell him.\nFinish your response by **ONE** follow up question that the provided documents could answer.\n\nThe documents are separated by the string \'*-*-*-*-*-*\'. Do not provide any explanations or details.\n\n# **Provided documents**: {documents}."
gen = ask_llm_stream(system, query)
last_value=""
displayable_docs = display_docs(docs)
yn_display = len(docs)*[True]+(5-len(docs))*[False]
while True:
try:
last_value = next(gen)
yield last_value, displayable_docs, history + f"[query]\n{query}\n[answer]\n{last_value}\n[references]\n{displayable_docs}\n\n", gr.Button("Ref 1", visible=yn_display[0]), gr.Button("Ref 2", visible=yn_display[1]), gr.Button("Ref 3", visible=yn_display[2]), gr.Button("Ref 4", visible=yn_display[3]), gr.Button("Ref 5", visible=yn_display[4])
except StopIteration as e:
break
history += f"[query]\n{query}\n[answer]\n{last_value}\n[references]\n{displayable_docs}\n\n"
return last_value, displayable_docs, history, gr.Button("Ref 1", visible=yn_display[0]), gr.Button("Ref 2", visible=yn_display[1]), gr.Button("Ref 3", visible=yn_display[2]), gr.Button("Ref 4", visible=yn_display[3]), gr.Button("Ref 5", visible=yn_display[4])
def auth_user(ui_session_id):
if ui_session_id in os.environ['users'].split(', '):
return gr.Textbox(label='Username', visible=False), gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"], visible=True), gr.Button("Reset AI Knowledge", visible=True), gr.Markdown(label='AI Answer', visible=True), gr.Textbox(placeholder="Type your question", label="Question ❔", scale=9, visible=True), gr.Button("▶", scale=1, visible=True), gr.Textbox(label='Sources', show_copy_button=True, visible=True), gr.File(label="Zipped database", visible=True), gr.Textbox(label='History', show_copy_button=True, visible=True)
else:
return gr.Textbox(label='Username', visible=True), gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"], visible=False), gr.Button("Reset AI Knowledge", visible=False), gr.Markdown(label='AI Answer', visible=False), gr.Textbox(placeholder="Type your question", label="Question ❔", scale=9, visible=False), gr.Button("▶", scale=1, visible=False), gr.Textbox(label='Sources', show_copy_button=True, visible=False), gr.File(label="Zipped database", visible=False), gr.Textbox(label='History', show_copy_button=True, visible=False)
def display_info0(documents):
try:
return gr.Markdown(value=documents.split("\n*§*§*\n")[0], label='Source', visible=True), gr.Button('Hide', visible=True)
except Exception as e:
gr.Info("No Document")
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False)
def display_info1(documents):
try:
return gr.Markdown(value=documents.split("\n*§*§*\n")[1], label='Source', visible=True), gr.Button('Hide', visible=True)
except Exception as e:
gr.Info("No Document")
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False)
def display_info2(documents):
try:
return gr.Markdown(value=documents.split("\n*§*§*\n")[2], label='Source', visible=True), gr.Button('Hide', visible=True)
except Exception as e:
gr.Info("No Document")
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False)
def display_info3(documents):
try:
return gr.Markdown(value=documents.split("\n*§*§*\n")[3], label='Source', visible=True), gr.Button('Hide', visible=True)
except Exception as e:
gr.Info("No Document")
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False)
def display_info4(documents):
try:
return gr.Markdown(value=documents.split("\n*§*§*\n")[4], label='Source', visible=True), gr.Button('Hide', visible=True)
except Exception as e:
gr.Info("No Document")
return gr.Markdown(label='Source', visible=False), gr.Button('Hide', visible=False)
with gr.Blocks() as demo:
gr.Markdown("# Enrich an LLM knowledge with your own documents 🧠🤖")
with gr.Column():
tb_session_id = gr.Textbox(label='Username')
docs_input = gr.File(file_count="multiple", file_types=[".txt", ".pdf",".zip",".docx"], visible=False)
btn_reset_db = gr.Button("Reset AI Knowledge", visible=False)
with gr.Column():
answer_output = gr.Markdown(label='AI Answer', visible=False)
btn_hide_source = gr.Button('Hide', visible=False)
md_ref = gr.Markdown(label='Source', visible=False)
with gr.Row():
query_input = gr.Textbox(placeholder="Type your question", label="Question ❔", scale=9, visible=False)
btn_askGPT = gr.Button("▶", scale=1, visible=False)
with gr.Row():
btn1 = gr.Button("Ref 1", visible=False)
btn2 = gr.Button("Ref 2", visible=False)
btn3 = gr.Button("Ref 3", visible=False)
btn4 = gr.Button("Ref 4", visible=False)
btn5 = gr.Button("Ref 5", visible=False)
tb_sources = gr.Textbox(label='Sources', show_copy_button=True, visible=False)
with gr.Accordion("Download your knowledge base and see your conversation history", open=False):
db_output = gr.File(label="Zipped database", visible=False)
tb_history = gr.Textbox(label='History', show_copy_button=True, visible=False, interactive=False)
tb_session_id.submit(auth_user, inputs=tb_session_id, outputs=[tb_session_id, docs_input, btn_reset_db, answer_output, query_input, btn_askGPT, tb_sources, db_output, tb_history])
docs_input.upload(embed_files, inputs=[docs_input,tb_session_id], outputs=[db_output,tb_session_id, query_input])
btn_reset_db.click(reset_database,inputs=[tb_session_id],outputs=[db_output])
btn_askGPT.click(ask_gpt, inputs=[query_input, tb_session_id, tb_history], outputs=[answer_output, tb_sources, tb_history, btn1, btn2, btn3, btn4, btn5])
query_input.submit(ask_gpt, inputs=[query_input, tb_session_id, tb_history], outputs=[answer_output, tb_sources, tb_history, btn1, btn2, btn3, btn4, btn5])
btn1.click(display_info0, inputs=tb_sources, outputs=[md_ref, btn_hide_source])
btn2.click(display_info1, inputs=tb_sources, outputs=[md_ref, btn_hide_source])
btn3.click(display_info2, inputs=tb_sources, outputs=[md_ref, btn_hide_source])
btn4.click(display_info3, inputs=tb_sources, outputs=[md_ref, btn_hide_source])
btn5.click(display_info4, inputs=tb_sources, outputs=[md_ref, btn_hide_source])
btn_hide_source.click(hide_source, inputs=None, outputs=[md_ref, btn_hide_source])
demo.launch(debug=False,share=False) |