adrienbrdne commited on
Commit
417877c
·
verified ·
1 Parent(s): 262dc75

Upload 3 files

Browse files
Files changed (3) hide show
  1. Dockerfile +19 -0
  2. app.py +144 -0
  3. requirements.txt +7 -0
Dockerfile ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9
2
+
3
+ WORKDIR /app
4
+
5
+ RUN python -m pip install --upgrade pip
6
+
7
+ # Create cache folder and make sure it is accessible
8
+ RUN mkdir -p /app/cache && chmod -R 777 /app/cache
9
+
10
+ # Set environment variables for the cache
11
+ ENV HF_HOME="/app/cache"
12
+ ENV TORCH_HOME="/app/cache"
13
+
14
+ COPY requirements.txt .
15
+ RUN pip install --no-cache-dir -r requirements.txt
16
+
17
+ COPY app.py .
18
+
19
+ CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
app.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import uvicorn
3
+ from fastapi import FastAPI, HTTPException
4
+ from pydantic import BaseModel
5
+ from typing import List, Dict, Union
6
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
7
+ import torch
8
+
9
+
10
+ # Definition of Pydantic data models
11
+ class ProblematicItem(BaseModel):
12
+ text: str
13
+
14
+ class ProblematicList(BaseModel):
15
+ problematics: List[str]
16
+
17
+ class PredictionResponse(BaseModel):
18
+ predicted_class: str
19
+ score: float
20
+
21
+ class PredictionsResponse(BaseModel):
22
+ results: List[Dict[str, Union[str, float]]]
23
+
24
+ # FastAPI Configuration
25
+ app = FastAPI(
26
+ title="Problematic Specificity Classification API",
27
+ description="This API classifies problematics using a fine-tuned model hosted on Hugging Face.",
28
+ version="1.0.0"
29
+ )
30
+
31
+ # Model environment variables
32
+ MODEL_NAME = os.getenv("MODEL_NAME", "votre-compte/votre-modele")
33
+ LABEL_0 = os.getenv("LABEL_0", "Classe A")
34
+ LABEL_1 = os.getenv("LABEL_1", "Classe B")
35
+
36
+ # Loading the model and tokenizer
37
+ tokenizer = None
38
+ model = None
39
+
40
+ def load_model():
41
+ global tokenizer, model
42
+ try:
43
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
44
+ model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
45
+ return True
46
+ except Exception as e:
47
+ print(f"Error loading model: {e}")
48
+ return False
49
+
50
+ # API state check route
51
+ @app.get("/")
52
+ def read_root():
53
+ return {"status": "ok", "model": MODEL_NAME}
54
+
55
+ # Route for checking model status
56
+ @app.get("/health")
57
+ def health_check():
58
+ global model, tokenizer
59
+ if model is None or tokenizer is None:
60
+ success = load_model()
61
+ if not success:
62
+ raise HTTPException(status_code=503, detail="Model not available")
63
+ return {"status": "ok", "model": MODEL_NAME}
64
+
65
+ # Route to predict a single problem at a time
66
+ @app.post("/predict", response_model=PredictionResponse)
67
+ def predict_single(item: ProblematicItem):
68
+ global model, tokenizer
69
+
70
+ if model is None or tokenizer is None:
71
+ success = load_model()
72
+ if not success:
73
+ raise HTTPException(status_code=503, detail="Model not available")
74
+
75
+ try:
76
+ # Tokenization
77
+ inputs = tokenizer(item.text, padding=True, truncation=True, return_tensors="pt")
78
+
79
+ # Prediction
80
+ with torch.no_grad():
81
+ outputs = model(**inputs)
82
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
83
+ predicted_class = torch.argmax(probabilities, dim=1).item()
84
+ confidence_score = probabilities[0][predicted_class].item()
85
+
86
+ # Associate the correct label
87
+ predicted_label = LABEL_0 if predicted_class == 0 else LABEL_1
88
+
89
+ return PredictionResponse(predicted_class=predicted_label, score=confidence_score)
90
+
91
+ except Exception as e:
92
+ raise HTTPException(status_code=500, detail=f"Error during prediction: {str(e)}")
93
+
94
+ # Route for predicting several problems at once
95
+ @app.post("/predict-batch", response_model=PredictionsResponse)
96
+ def predict_batch(items: ProblematicList):
97
+ global model, tokenizer
98
+
99
+ if model is None or tokenizer is None:
100
+ success = load_model()
101
+ if not success:
102
+ raise HTTPException(status_code=503, detail="Model not available")
103
+
104
+ try:
105
+ results = []
106
+
107
+ # Batch processing
108
+ batch_size = 16
109
+ for i in range(0, len(items.problematics), batch_size):
110
+ batch_texts = items.problematics[i:i+batch_size]
111
+
112
+ # Tokenization
113
+ inputs = tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt")
114
+
115
+ # Prediction
116
+ with torch.no_grad():
117
+ outputs = model(**inputs)
118
+ probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
119
+ predicted_classes = torch.argmax(probabilities, dim=1).tolist()
120
+ confidence_scores = [probabilities[j][predicted_classes[j]].item() for j in range(len(predicted_classes))]
121
+
122
+ # Converting numerical predictions into labels
123
+ for j, (pred_class, score) in enumerate(zip(predicted_classes, confidence_scores)):
124
+ predicted_label = LABEL_0 if pred_class == 0 else LABEL_1
125
+ results.append({
126
+ "text": batch_texts[j],
127
+ "class": predicted_label,
128
+ "score": score
129
+ })
130
+
131
+ return PredictionsResponse(results=results)
132
+
133
+ except Exception as e:
134
+ raise HTTPException(status_code=500, detail=f"Error during prediction: {str(e)}")
135
+
136
+ # Model loading at startup
137
+ @app.on_event("startup")
138
+ async def startup_event():
139
+ load_model()
140
+
141
+ # Entry point for uvicorn
142
+ if __name__ == "__main__":
143
+ # Starting the server with uvicorn
144
+ uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)
requirements.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ fastapi>=0.95.1
2
+ uvicorn>=0.22.0
3
+ pydantic>=1.10.7
4
+ transformers>=4.28.1
5
+ torch>=2.0.0
6
+ python-multipart>=0.0.6
7
+ requests==2.32.3