import os import uvicorn from fastapi import FastAPI, HTTPException from pydantic import BaseModel from typing import List, Dict, Union from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch # Definition of Pydantic data models class ProblematicItem(BaseModel): text: str class ProblematicList(BaseModel): problematics: List[str] class PredictionResponse(BaseModel): predicted_class: str score: float class PredictionsResponse(BaseModel): results: List[Dict[str, Union[str, float]]] # FastAPI Configuration app = FastAPI( title="Problematic Specificity Classification API", description="This API classifies problematics using a fine-tuned model hosted on Hugging Face.", version="1.0.0" ) # Model environment variables MODEL_NAME = os.getenv("MODEL_NAME", "votre-compte/votre-modele") LABEL_0 = os.getenv("LABEL_0", "Classe A") LABEL_1 = os.getenv("LABEL_1", "Classe B") # Loading the model and tokenizer tokenizer = None model = None def load_model(): global tokenizer, model try: tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME) return True except Exception as e: print(f"Error loading model: {e}") return False # API state check route @app.get("/") def read_root(): return {"status": "ok", "model": MODEL_NAME} # Route for checking model status @app.get("/health") def health_check(): global model, tokenizer if model is None or tokenizer is None: success = load_model() if not success: raise HTTPException(status_code=503, detail="Model not available") return {"status": "ok", "model": MODEL_NAME} # Route to predict a single problem at a time @app.post("/predict", response_model=PredictionResponse) def predict_single(item: ProblematicItem): global model, tokenizer if model is None or tokenizer is None: success = load_model() if not success: raise HTTPException(status_code=503, detail="Model not available") try: # Tokenization inputs = tokenizer(item.text, padding=True, truncation=True, return_tensors="pt") # Prediction with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_class = torch.argmax(probabilities, dim=1).item() confidence_score = probabilities[0][predicted_class].item() # Associate the correct label predicted_label = LABEL_0 if predicted_class == 0 else LABEL_1 return PredictionResponse(predicted_class=predicted_label, score=confidence_score) except Exception as e: raise HTTPException(status_code=500, detail=f"Error during prediction: {str(e)}") # Route for predicting several problems at once @app.post("/predict-batch", response_model=PredictionsResponse) def predict_batch(items: ProblematicList): global model, tokenizer if model is None or tokenizer is None: success = load_model() if not success: raise HTTPException(status_code=503, detail="Model not available") try: results = [] # Batch processing batch_size = 16 for i in range(0, len(items.problematics), batch_size): batch_texts = items.problematics[i:i+batch_size] # Tokenization inputs = tokenizer(batch_texts, padding=True, truncation=True, return_tensors="pt") # Prediction with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) predicted_classes = torch.argmax(probabilities, dim=1).tolist() confidence_scores = [probabilities[j][predicted_classes[j]].item() for j in range(len(predicted_classes))] # Converting numerical predictions into labels for j, (pred_class, score) in enumerate(zip(predicted_classes, confidence_scores)): predicted_label = LABEL_0 if pred_class == 0 else LABEL_1 results.append({ "text": batch_texts[j], "class": predicted_label, "score": score }) return PredictionsResponse(results=results) except Exception as e: raise HTTPException(status_code=500, detail=f"Error during prediction: {str(e)}") # Model loading at startup @app.on_event("startup") async def startup_event(): load_model() # Entry point for uvicorn if __name__ == "__main__": # Starting the server with uvicorn uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=True)