Spaces:
Runtime error
Runtime error
File size: 12,918 Bytes
1f05644 8a495ab 1f05644 8a495ab 1f05644 b0355df 6117e08 1f05644 4c02ba8 22e1752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
from src.services.utils import *
from src.services.processor import *
global_tech, global_tech_embeddings = load_technologies()
def process_input(data, global_tech, global_tech_embeddings):
prompt = set_prompt(data.problem)
constraints = retrieve_constraints(prompt)
constraints_stemmed = stem(constraints, "constraints")
save_dataframe(constraints_stemmed, "constraints_stemmed.xlsx")
#global_tech, keys, original_tech = preprocess_tech_data(df)
save_dataframe(global_tech, "global_tech.xlsx")
result_similarities, matrix = get_contrastive_similarities(constraints_stemmed, global_tech, global_tech_embeddings, )
save_to_pickle(result_similarities)
print(f"Matrix : {matrix} \n Constraints : {constraints_stemmed} \n Gloabl tech : {global_tech}")
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix)
best_technologies_id = select_technologies(best_combinations)
best_technologies = get_technologies_by_id(best_technologies_id,global_tech)
return best_technologies
def process_input_from_constraints(constraints, global_tech, global_tech_embeddings):
constraints_stemmed = stem(constraints, "constraints")
save_dataframe(constraints_stemmed, "constraints_stemmed.xlsx")
#global_tech, keys, original_tech = preprocess_tech_data(df)
save_dataframe(global_tech, "global_tech.xlsx")
result_similarities, matrix = get_contrastive_similarities(constraints_stemmed, global_tech, global_tech_embeddings, )
save_to_pickle(result_similarities)
print(f"Matrix : {matrix} \n Constraints : {constraints_stemmed} \n Gloabl tech : {global_tech}")
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix)
best_technologies_id = select_technologies(best_combinations)
best_technologies = get_technologies_by_id(best_technologies_id,global_tech)
return best_technologies
import gradio as gr
import pandas as pd
import numpy as np
import random
import json
# --- Dummy Implementations for src.services.utils and src.services.processor ---
# These functions simulate the behavior of your actual services for the Gradio interface.
def load_technologies():
"""
Dummy function to simulate loading technologies and their embeddings.
Returns a sample DataFrame and a dummy numpy array for embeddings.
"""
tech_data = {
'id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'name': [
'Machine Learning', 'Cloud Computing', 'Blockchain', 'Cybersecurity',
'Data Analytics', 'Artificial Intelligence', 'DevOps', 'Quantum Computing',
'Edge Computing', 'Robotics'
],
'description': [
'Algorithms for learning from data.', 'On-demand computing resources.',
'Decentralized ledger technology.', 'Protecting systems from threats.',
'Analyzing large datasets.', 'Simulating human intelligence.',
'Software development and operations.', 'Utilizing quantum mechanics.',
'Processing data near the source.', 'Automated machines.'
]
}
global_tech_df = pd.DataFrame(tech_data)
# Simulate embeddings as random vectors
global_tech_embeddings_array = np.random.rand(len(global_tech_df), 128)
return global_tech_df, global_tech_embeddings_array
def set_prompt(problem_description: str) -> str:
"""
Dummy function to simulate prompt generation.
"""
return f"Based on the problem: '{problem_description}', what are the key technical challenges and requirements?"
def retrieve_constraints(prompt: str) -> list[str]:
"""
Dummy function to simulate constraint retrieval.
Returns a few sample constraints based on the prompt.
"""
if "security" in prompt.lower() or "secure" in prompt.lower():
return ["high security", "data privacy", "authentication"]
elif "performance" in prompt.lower() or "speed" in prompt.lower():
return ["low latency", "high throughput", "scalability"]
elif "data" in prompt.lower() or "analyze" in prompt.lower():
return ["data integration", "real-time analytics", "data storage"]
return ["cost-efficiency", "ease of integration", "maintainability", "scalability"]
def stem(text_list: list[str], type_of_text: str) -> list[str]:
"""
Dummy function to simulate stemming.
Simplistically removes 'ing', 's', 'es' from words.
"""
stemmed_list = []
for text in text_list:
words = text.split()
stemmed_words = []
for word in words:
word = word.lower()
if word.endswith("ing"):
word = word[:-3]
elif word.endswith("es"):
word = word[:-2]
elif word.endswith("s"):
word = word[:-1]
stemmed_words.append(word)
stemmed_list.append(" ".join(stemmed_words))
return stemmed_list
def save_dataframe(df: pd.DataFrame, filename: str):
"""
Dummy function to simulate saving a DataFrame.
"""
print(f"Simulating saving DataFrame to {filename}")
# In a real scenario, you might save to Excel: df.to_excel(filename, index=False)
def save_to_pickle(data):
"""
Dummy function to simulate saving data to a pickle file.
"""
print(f"Simulating saving data to pickle: {type(data)}")
def get_contrastive_similarities(constraints_stemmed: list[str], global_tech_df: pd.DataFrame, global_tech_embeddings: np.ndarray):
"""
Dummy function to simulate getting contrastive similarities.
Returns a dummy similarity matrix and result similarities.
"""
num_constraints = len(constraints_stemmed)
num_tech = len(global_tech_df)
# Simulate a similarity matrix
# Each row corresponds to a constraint, each column to a technology
matrix = np.random.rand(num_constraints, num_tech)
matrix = np.round(matrix, 3) # Round for better display
# Simulate result_similarities (e.g., top 3 technologies for each constraint)
result_similarities = {}
for i, constraint in enumerate(constraints_stemmed):
# Get top 3 tech indices for this constraint
top_tech_indices = np.argsort(matrix[i])[::-1][:3]
top_tech_names = [global_tech_df.iloc[idx]['name'] for idx in top_tech_indices]
top_tech_scores = [matrix[i, idx] for idx in top_tech_indices]
result_similarities[constraint] = list(zip(top_tech_names, top_tech_scores))
return result_similarities, matrix
def find_best_list_combinations(constraints_stemmed: list[str], global_tech_df: pd.DataFrame, matrix: np.ndarray) -> list[dict]:
"""
Dummy function to simulate finding best list combinations.
Returns a few dummy combinations of technologies.
"""
best_combinations = []
# Simulate finding combinations that best cover constraints
for i in range(min(3, len(constraints_stemmed))): # Create up to 3 dummy combinations
combination = {
"technologies": [],
"score": round(random.uniform(0.7, 0.95), 2),
"covered_constraints": []
}
num_tech_in_combo = random.randint(2, 4)
selected_tech_ids = random.sample(global_tech_df['id'].tolist(), num_tech_in_combo)
for tech_id in selected_tech_ids:
tech_name = global_tech_df[global_tech_df['id'] == tech_id]['name'].iloc[0]
combination["technologies"].append({"id": tech_id, "name": tech_name})
# Assign some random constraints to be covered
num_covered_constraints = random.randint(1, len(constraints_stemmed))
combination["covered_constraints"] = random.sample(constraints_stemmed, num_covered_constraints)
best_combinations.append(combination)
return best_combinations
def select_technologies(best_combinations: list[dict]) -> list[int]:
"""
Dummy function to simulate selecting technologies based on best combinations.
Returns a list of unique technology IDs.
"""
selected_ids = set()
for combo in best_combinations:
for tech in combo["technologies"]:
selected_ids.add(tech["id"])
return list(selected_ids)
def get_technologies_by_id(tech_ids: list[int], global_tech_df: pd.DataFrame) -> list[dict]:
"""
Dummy function to simulate retrieving technology details by ID.
"""
selected_technologies = []
for tech_id in tech_ids:
tech_info = global_tech_df[global_tech_df['id'] == tech_id]
if not tech_info.empty:
selected_technologies.append(tech_info.iloc[0].to_dict())
return selected_technologies
# --- Core Logic (Modified for Gradio Interface) ---
# Load global technologies and embeddings once when the app starts
global_tech_df, global_tech_embeddings_array = load_technologies()
def process_input_gradio(problem_description: str):
"""
Processes the input problem description step-by-step for Gradio.
Returns all intermediate results.
"""
# Step 1: Set Prompt
prompt = set_prompt(problem_description)
# Step 2: Retrieve Constraints
constraints = retrieve_constraints(prompt)
# Step 3: Stem Constraints
constraints_stemmed = stem(constraints, "constraints")
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx")
# Step 4: Global Tech (already loaded, just acknowledge)
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading
# Step 5: Get Contrastive Similarities
result_similarities, matrix = get_contrastive_similarities(
constraints_stemmed, global_tech_df, global_tech_embeddings_array
)
save_to_pickle(result_similarities)
# Step 6: Find Best List Combinations
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech_df, matrix)
# Step 7: Select Technologies
best_technologies_id = select_technologies(best_combinations)
# Step 8: Get Technologies by ID
best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df)
# Format outputs for Gradio
# Convert numpy array to list of lists for better Gradio display
matrix_display = matrix.tolist()
# Convert result_similarities to a more readable format for Gradio
result_similarities_display = {
k: ", ".join([f"{name} ({score:.3f})" for name, score in v])
for k, v in result_similarities.items()
}
best_combinations_display = json.dumps(best_combinations, indent=2)
best_technologies_display = json.dumps(best_technologies, indent=2)
return (
prompt,
", ".join(constraints),
", ".join(constraints_stemmed),
"Global technologies loaded and ready.", # Acknowledge tech loading
str(result_similarities_display), # Convert dict to string for display
pd.DataFrame(matrix_display, index=constraints_stemmed, columns=global_tech_df['name']), # Display matrix as DataFrame
best_combinations_display,
", ".join(map(str, best_technologies_id)),
best_technologies_display
)
# --- Gradio Interface Setup ---
# Define the input and output components
input_problem = gr.Textbox(
label="Enter Problem Description",
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics."
)
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False)
output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False)
output_stemmed_constraints = gr.Textbox(label="3. Stemmed Constraints", interactive=False)
output_tech_loaded = gr.Textbox(label="4. Global Technologies Status", interactive=False)
output_similarities = gr.Textbox(label="5. Result Similarities (Constraint -> Top Technologies)", interactive=False)
output_matrix = gr.Dataframe(label="6. Similarity Matrix (Constraints vs. Technologies)", interactive=False)
output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found", interactive=False)
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
output_final_technologies = gr.JSON(label="9. Final Best Technologies", interactive=False)
# Create the Gradio Interface
gr.Interface(
fn=process_input_gradio,
inputs=input_problem,
outputs=[
output_prompt,
output_constraints,
output_stemmed_constraints,
output_tech_loaded,
output_similarities,
output_matrix,
output_best_combinations,
output_selected_ids,
output_final_technologies
],
title="Insight Finder: Step-by-Step Technology Selection",
description="Enter a problem description to see how relevant technologies are identified through various processing steps.",
allow_flagging="never"
).launch() |