Spaces:
Runtime error
Runtime error
File size: 9,978 Bytes
a7372e0 1f05644 9067d41 e076de5 1f05644 e076de5 1f05644 9f6573c 1f05644 9f6573c 1f05644 9bd34e5 1f05644 69dc23d be240c1 69dc23d be240c1 69dc23d be240c1 69dc23d be240c1 69dc23d a7372e0 69dc23d be240c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
from src.services.utils import tech_to_dict, stem, set_gemini
import requests as r
import json
import nltk
import itertools
import numpy as np
from sentence_transformers import *
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def retrieve_constraints(prompt):
request_input = {"models": ["meta-llama/llama-4-scout-17b-16e-instruct"], "messages": [{"role":"user", "content":prompt}]}
response = r.post("https://organizedprogrammers-bettergroqinterface.hf.space/chat", json=request_input)
decoded_content = json.loads(response.content.decode())
llm_response = decoded_content["content"]
print(f"llm response : {llm_response}")
start_marker = '{'
end_marker = '}'
start_index = llm_response.find(start_marker) + len(start_marker)
end_index = llm_response.find(end_marker, start_index)
json_str = llm_response[start_index:end_index].strip()
constraints_json = json.loads("{"+json_str+"}")
print(f"Whats returned : {constraints_json}")
return constraints_json
def preprocess_tech_data(_df):
if _df is None or "description" not in _df.columns:
return [], []
technologies_list = _df["description"].to_list()
tech_dict_raw = tech_to_dict(technologies_list)
tech_dict_filtered = [
t for t in tech_dict_raw if (
len(t.get("title", "")) >= 5 and
len(t.get("advantages", "")) >= 5 and
len(t.get("key_components", "")) >= 5
)
]
if not tech_dict_filtered:
return [], []
processed_tech_wt = stem(tech_dict_filtered,"technologies")
for t_item_wt in processed_tech_wt:
kc = t_item_wt.get("key_components")
if isinstance(kc, str):
t_item_wt["key_components"] = ''.join(nltk.sent_tokenize(kc))
else:
t_item_wt["key_components"] = ""
original_tech_for_display = tech_dict_filtered[:len(processed_tech_wt)]
_keys = list(processed_tech_wt[0].keys()) if processed_tech_wt else []
return processed_tech_wt, _keys, original_tech_for_display
def remove_over_repeated_technologies(result):
total_lists = len(result)
tech_title = {}
for idx, item in enumerate(result):
for tech in item['technologies']:
tech_title[tech[0]['title']] = 0 if tech[0]['title'] not in tech_title else tech_title[tech[0]['title']] + 1
threshold = total_lists * 0.3
print(threshold)
print(tech_title)
to_delete = []
for tech, lists in tech_title.items():
if lists > threshold:
print(f"This technology have been found over repeated : " + tech)
to_delete.append(tech)
for idx, item in enumerate(result):
result[idx]['technologies'] = [tech for tech in item['technologies'] if tech[0]['title'] not in to_delete]
return result
def get_contrastive_similarities(constraints, pre_encoded_tech_data, pre_encoded_tech_embeddings):
selected_pairs = []
matrix = []
constraint_descriptions = [c["description"] for c in constraints]
constraint_embeddings = model.encode(constraint_descriptions, show_progress_bar=False)
for i, constraint in enumerate(constraints):
constraint_embedding = constraint_embeddings[i]
constraint_matrix = []
for j, tech2 in enumerate(pre_encoded_tech_data):
tech_embedding = pre_encoded_tech_embeddings[j]
purpose_sim = model.similarity(constraint_embedding, tech_embedding)
if np.isnan(purpose_sim):
purpose_sim = 0.0
selected_pairs.append({
"constraint": constraint,
"id2": tech2["id"],
"similarity": purpose_sim
})
constraint_matrix.append(purpose_sim)
matrix.append(constraint_matrix)
return selected_pairs, matrix
def find_best_list_combinations(list1: list[str], list2: list[str], matrix) -> list[dict]:
if not list1 or not list2:
print("Warning: One or both input lists are empty. Returning an empty list.")
return []
MIN_SIMILARITY = 0.3
MAX_SIMILARITY = 0.8
possible_matches_for_each_l1 = []
for i in range(len(list1)):
valid_matches_for_l1_element = []
for j in range(len(list2)):
score = matrix[i][j]
if MIN_SIMILARITY <= score <= MAX_SIMILARITY:
valid_matches_for_l1_element.append((list2[j], score))
if not valid_matches_for_l1_element:
print(f"No valid matches found in list2 for '{list1[i]}' from list1 "
f"(score between {MIN_SIMILARITY} and {MAX_SIMILARITY}). "
"Returning an empty list as no complete combinations can be formed.")
else:
possible_matches_for_each_l1.append((valid_matches_for_l1_element, list1[i]))
result = []
for tech_list, problem in possible_matches_for_each_l1:
sorted_list = sorted(
tech_list,
key=lambda x: x[1].item() if hasattr(x[1], 'item') else float(x[1]),
reverse=True
)
top5 = sorted_list[:5]
result.append({
'technologies': top5,
'problem': problem
})
result = remove_over_repeated_technologies(result)
return result
def select_technologies(problem_technology_list):
distinct_techs = set()
candidate_map = []
for problem_data in problem_technology_list:
cand_dict = {}
for tech_info, sim in problem_data['technologies']:
tech_id = tech_info['id']
distinct_techs.add(tech_id)
cand_dict[tech_id] = float(sim)
candidate_map.append(cand_dict)
distinct_techs = sorted(list(distinct_techs))
n = len(problem_technology_list)
if n == 0:
return set()
min_k = None
best_set = None
best_avg = -1
print(f"Distinct technologies: {distinct_techs}")
print(f"Candidate map: {candidate_map}")
print(f"Number of problems: {n}")
for k in range(1, len(distinct_techs)+1):
if min_k is not None and k > min_k:
break
for T in itertools.combinations(distinct_techs, k):
total_sim = 0.0
covered = True
for i in range(n):
max_sim = -1.0
found = False
for tech in T:
if tech in candidate_map[i]:
found = True
sim_val = candidate_map[i][tech]
if sim_val > max_sim:
max_sim = sim_val
if not found:
covered = False
break
else:
total_sim += max_sim
if covered:
avg_sim = total_sim / n
if min_k is None or k < min_k:
min_k = k
best_set = T
best_avg = avg_sim
elif k == min_k and avg_sim > best_avg:
best_set = T
best_avg = avg_sim
if min_k is not None and k == min_k:
break
if best_set is None:
return set()
return set(best_set)
def load_titles(techno, data_type):
if data_type == "pydantic":
technology_titles = [tech.title for tech in techno]
else: # data_type == "dict"
technologies = techno["technologies"]
technology_titles = [tech["title"] for tech in technologies]
return technology_titles
def search_prior_art(technologies_input: list, data: str, data_type: str, techno_type: str) -> json:
"""
Searches for prior art patents online that solve a given technical problem
using a set of specified technologies, leveraging the Gemini model's search capabilities.
"""
technology_titles = load_titles(technologies_input, techno_type)
if data_type == "problem":
prompt = f"Find prior art patents or research paper online that address the technical problem: '{data}'. " \
elif data_type == "constraints":
prompt = f"Find prior art patents or research paper online that address those constraints: '{data}'. " \
prompt += f"Using any combination of the following technologies: {', '.join(technology_titles)}. " \
f"Specifically look for patents that integrate multiple of these technologies. " \
f"Indicate for each document found what technologies is used inside of it from the provided list"
client,config = set_gemini()
response = client.models.generate_content(
model="gemini-2.5-flash",
contents=prompt,
config=config,
)
return response
def add_citations_and_collect_uris(response):
try:
print(response)
text = response.text
supports = response.candidates[0].grounding_metadata.grounding_supports
chunks = response.candidates[0].grounding_metadata.grounding_chunks
sorted_supports = sorted(supports, key=lambda s: s.segment.end_index, reverse=True)
uris_added = set()
for support in sorted_supports:
end_index = support.segment.end_index
if support.grounding_chunk_indices:
citation_links = []
for i in support.grounding_chunk_indices:
if i < len(chunks):
uri = chunks[i].web.uri
# Add URI only if not already in text or collected
if uri not in text and uri not in uris_added:
citation_links.append(f"[{i + 1}]({uri})")
uris_added.add(uri)
if citation_links:
citation_string = ", ".join(citation_links)
text = text[:end_index] + citation_string + text[end_index:]
return {"content": text,"uris": list(uris_added)}
except Exception as e:
print(f"Error : {e}")
return {"content": e, "uris": []} |