Spaces:
Runtime error
Runtime error
from fastapi import FastAPI | |
from pydantic import BaseModel | |
from typing import Dict, List | |
import gradio as gr | |
import pandas as pd | |
import json | |
from src.core import * | |
app = FastAPI( | |
title="Insight Finder", | |
description="Find relevant technologies from a problem", | |
) | |
class InputData(BaseModel): | |
problem: str | |
class InputConstraints(BaseModel): | |
constraints: Dict[str, str] | |
# This schema defines the structure for a single technology object | |
class Technology(BaseModel): | |
"""Represents a single technology entry with its details.""" | |
title: str | |
purpose: str | |
key_components: str | |
advantages: str | |
limitations: str | |
id: int | |
class PriorArt(BaseModel): | |
"""Represents the search of prior art using the technology combinations""" | |
content: str | |
uris: List | |
# This schema defines the root structure of the JSON | |
class TechnologyData(BaseModel): | |
"""Represents the top-level object containing a list of technologies.""" | |
technologies: List[Technology] | |
async def process(data: InputData): | |
result, prior_art = process_input(data, global_tech, global_tech_embeddings, "problem") | |
return {"technologies": result, "prior_art": prior_art} | |
async def process_constraints(constraints: InputConstraints): | |
result, prior_art = process_input(constraints.constraints, global_tech, global_tech_embeddings, "constraints") | |
return {"technologies": result, "prior_art": prior_art} | |
async def prior_art_search(technologies: TechnologyData, constraints: InputConstraints, type: str): | |
prior_art = process_prior_art(technologies, constraints, type) | |
return prior_art | |
async def prior_art_search(technologies: TechnologyData, problems: InputData, type: str): | |
prior_art = process_prior_art(technologies, problems, type) | |
return prior_art | |
def make_json_serializable(data): | |
if isinstance(data, dict): | |
return {k: make_json_serializable(v) for k, v in data.items()} | |
elif isinstance(data, list): | |
return [make_json_serializable(item) for item in data] | |
elif isinstance(data, tuple): | |
return tuple(make_json_serializable(item) for item in data) | |
elif hasattr(data, 'item'): | |
return float(data.item()) | |
else: | |
return data | |
# --- Helper functions to format HTML outputs --- | |
def format_constraints_html(constraints: dict) -> str: | |
html_content = "<div class='constraints-container'>" | |
for title, description in constraints.items(): | |
html_content += f""" | |
<div class='constraint-item'> | |
<p><span class='constraint-title'>{title}:</span> <span class='constraint-description'>{description}</span></p> | |
</div> | |
""" | |
html_content += "</div>" | |
return "<h1>Retrieved Constraints</h1>" + html_content | |
def format_best_combinations_html(combinations_data: list) -> str: | |
html_content = "<div class='combinations-outer-container'>" | |
for i, combination in enumerate(combinations_data): | |
problem_title = combination.get("problem", {}).get("title", f"Problem {i+1}") | |
technologies = combination.get("technologies", []) | |
html_content += f""" | |
<div class='problem-card'> | |
<h3 class='problem-card-title'>{problem_title}</h3> | |
<div class='technologies-inner-container'> | |
""" | |
for tech_info_score in technologies: | |
tech_info = tech_info_score[0] # The dictionary part | |
if isinstance(tech_info, dict): | |
html_content += f""" | |
<div class='technology-card'> | |
<h4 class='tech-card-title'>{tech_info.get('title', 'N/A')}</h4> | |
<p><strong>Purpose:</strong> {tech_info.get('purpose', 'N/A')}</p> | |
<p><strong>Components:</strong> {tech_info.get('key_components', 'N/A')}</p> | |
<p><strong>Advantages:</strong> {tech_info.get('advantages', 'N/A')}</p> | |
<p><strong>Limitations:</strong> {tech_info.get('limitations', 'N/A')}</p> | |
</div> | |
""" | |
html_content += """ | |
</div> | |
</div> | |
""" | |
html_content += "</div>" | |
return "<h1>The 5 Best Technology Combinations per constraint</h1>" + html_content | |
def format_final_technologies_html(technologies_list: list) -> str: | |
html_content = "<div class='final-tech-container'>" | |
for tech_info in technologies_list: | |
if isinstance(tech_info, dict): | |
html_content += f""" | |
<div class='final-tech-card'> | |
<h4 class='final-tech-title'>{tech_info.get('title', 'N/A')}</h4> | |
<p><strong>Purpose:</strong> {tech_info.get('purpose', 'N/A')}</p> | |
<p><strong>Components:</strong> {tech_info.get('key_components', 'N/A')}</p> | |
<p><strong>Advantages:</strong> {tech_info.get('advantages', 'N/A')}</p> | |
<p><strong>Limitations:</strong> {tech_info.get('limitations', 'N/A')}</p> | |
</div> | |
""" | |
html_content += "</div>" | |
return "<h1>The best technologies combinations </h1>" + html_content | |
def process_input_gradio(problem_description: str): | |
""" | |
Processes the input problem description step-by-step for Gradio. | |
Returns all intermediate results. | |
""" | |
# Step 1: Set Prompt | |
prompt = set_prompt(problem_description) | |
# Step 2: Retrieve Constraints | |
constraints = retrieve_constraints(prompt) | |
# Step 3: Stem Constraints | |
constraints_stemmed = stem(constraints, "constraints") | |
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") | |
print(constraints_stemmed) | |
# Step 4: Global Tech (already loaded, just acknowledge) | |
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading | |
# Step 5: Get Contrastive Similarities | |
result_similarities, matrix = get_contrastive_similarities( | |
constraints_stemmed, global_tech, global_tech_embeddings | |
) | |
save_to_pickle(result_similarities) | |
# Step 6: Find Best List Combinations | |
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) | |
# Step 7: Select Technologies | |
best_technologies_id = select_technologies(best_combinations) | |
# Step 8: Get Technologies by ID | |
best_technologies = get_technologies_by_id(best_technologies_id, global_tech) | |
print(constraints) | |
print(best_combinations) | |
print(best_technologies) | |
# Format outputs for Gradio | |
# For Constraints: | |
constraints_html = format_constraints_html(constraints) | |
# For Best Combinations: | |
best_combinations_html = format_best_combinations_html(best_combinations) | |
# For Final Technologies: | |
final_technologies_html = format_final_technologies_html(best_technologies) | |
return ( | |
prompt, | |
constraints_html, # Output HTML for constraints | |
best_combinations_html, # Output HTML for best combinations | |
", ".join(map(str, best_technologies_id)), # Still a simple text list | |
final_technologies_html # Output HTML for final technologies | |
) | |
# --- Gradio Interface Setup --- | |
input_problem = gr.Textbox( | |
label="Enter Problem Description", | |
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." | |
) | |
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) | |
output_constraints = gr.HTML(label="2. Retrieved Constraints") # Changed to HTML | |
output_best_combinations = gr.HTML(label="7. Best Technology Combinations Found") # Changed to HTML | |
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) | |
output_final_technologies = gr.HTML(label="9. Final Best Technologies") # Changed to HTML | |
# Custom CSS for a professional look and specific output styling | |
custom_css = """ | |
/* General Body and Font Styling */ | |
body { | |
font-family: 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif; | |
color: #333; | |
background-color: #f0f2f5; | |
} | |
/* Header Styling */ | |
.gradio-container h1 { | |
color: #0056b3; /* A deep blue for the main title */ | |
text-align: center; | |
margin-bottom: 10px; | |
font-weight: 600; | |
font-size: 2.5em; | |
text-shadow: 1px 1px 2px rgba(0,0,0,0.1); | |
} | |
.gradio-container h2 { | |
color: #007bff; /* A slightly lighter blue for subtitles */ | |
text-align: center; | |
margin-top: 0; | |
margin-bottom: 30px; | |
font-weight: 400; | |
font-size: 1.2em; | |
} | |
/* Card-like styling for individual components */ | |
.gradio-container .gr-box { | |
background-color: #ffffff; | |
border-radius: 12px; | |
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); | |
padding: 20px; | |
margin-bottom: 20px; | |
border: 1px solid #e0e0e0; | |
} | |
/* Input Textbox Styling */ | |
.gradio-container input[type="text"], | |
.gradio-container textarea { | |
border: 1px solid #ced4da; | |
border-radius: 8px; | |
padding: 12px 15px; | |
font-size: 1em; | |
color: #495057; | |
transition: border-color 0.2s ease-in-out, box-shadow 0.2s ease-in-out; | |
} | |
.gradio-container input[type="text"]:focus, | |
.gradio-container textarea:focus { | |
border-color: #007bff; | |
box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25); | |
outline: none; | |
} | |
/* Button Styling */ | |
.gradio-container button { | |
background-color: #28a745; /* A vibrant green for action */ | |
color: white; | |
border: none; | |
border-radius: 8px; | |
padding: 12px 25px; | |
font-size: 1.1em; | |
font-weight: 500; | |
cursor: pointer; | |
transition: background-color 0.2s ease-in-out, transform 0.1s ease-in-out; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.gradio-container button:hover { | |
background-color: #218838; /* Darker green on hover */ | |
transform: translateY(-2px); | |
} | |
.gradio-container button:active { | |
transform: translateY(0); | |
} | |
/* Labels for outputs */ | |
.gradio-container label { | |
font-weight: 600; | |
color: #495057; | |
margin-bottom: 8px; | |
display: block; /* Ensure labels are on their own line */ | |
font-size: 1.1em; | |
} | |
/* --- Specific Styling for Outputs --- */ | |
/* 2. Retrieved Constraints Styling */ | |
.constraints-container { | |
padding: 15px; | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
border: 1px solid #e9ecef; | |
font-family: 'Georgia', serif; /* Different font */ | |
line-height: 1.6; | |
max-height: 300px; | |
overflow-y: auto; | |
} | |
.constraint-item { | |
margin-bottom: 10px; | |
padding-bottom: 10px; | |
border-bottom: 1px dashed #e0e0e0; | |
} | |
.constraint-item:last-child { | |
border-bottom: none; | |
margin-bottom: 0; | |
padding-bottom: 0; | |
} | |
.constraint-title { | |
font-weight: bold; | |
color: #004085; /* Darker blue for constraint titles */ | |
font-size: 1.1em; | |
} | |
.constraint-description { | |
color: #333; | |
font-size: 1em; | |
} | |
/* 7. Best Technology Combinations Found & 9. Final Best Technologies Styling */ | |
.combinations-outer-container, .final-tech-container { | |
padding: 15px; | |
background-color: #f8f9fa; | |
border-radius: 8px; | |
border: 1px solid #e9ecef; | |
max-height: 500px; /* Adjust as needed */ | |
overflow-y: auto; | |
font-family: 'Trebuchet MS', 'Lucida Grande', 'Lucida Sans Unicode', 'Lucida Sans', Tahoma, sans-serif; /* Different font */ | |
} | |
.problem-card { | |
background-color: #ffffff; | |
border: 1px solid #cfe2ff; /* Light blue border for problem card */ | |
border-radius: 10px; | |
padding: 20px; | |
margin-bottom: 20px; | |
box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05); | |
} | |
.problem-card-title { | |
color: #0056b3; /* Deep blue for problem title */ | |
font-size: 1.4em; | |
margin-top: 0; | |
margin-bottom: 15px; | |
border-bottom: 2px solid #cfe2ff; | |
padding-bottom: 10px; | |
} | |
.technologies-inner-container { | |
display: grid; | |
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); /* Responsive grid for technologies */ | |
gap: 15px; | |
} | |
.technology-card, .final-tech-card { | |
background-color: #f0faff; /* Very light blue for technology cards */ | |
border: 1px solid #b0d9ff; /* Slightly darker blue border */ | |
border-radius: 8px; | |
padding: 15px; | |
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05); | |
transition: transform 0.2s ease-in-out; | |
} | |
.technology-card:hover, .final-tech-card:hover { | |
transform: translateY(-3px); | |
} | |
.tech-card-title, .final-tech-title { | |
color: #007bff; /* Gradio's primary blue */ | |
font-size: 1.2em; | |
margin-top: 0; | |
margin-bottom: 10px; | |
font-weight: 600; | |
} | |
.technology-card p, .final-tech-card p { | |
font-size: 0.95em; | |
line-height: 1.5; | |
margin-bottom: 5px; | |
color: #555; | |
} | |
.technology-card p strong, .final-tech-card p strong { | |
color: #004085; /* Darker blue for bold labels */ | |
} | |
/* Responsive adjustments */ | |
@media (max-width: 768px) { | |
.gradio-container { | |
padding: 15px; | |
} | |
.gradio-container h1 { | |
font-size: 2em; | |
} | |
.gradio-container button { | |
width: 100%; | |
padding: 15px; | |
} | |
.technologies-inner-container { | |
grid-template-columns: 1fr; /* Stack columns on smaller screens */ | |
} | |
} | |
""" | |
# Create the Gradio Blocks demo with custom theme and CSS | |
with gr.Blocks( | |
theme=gr.themes.Soft(), | |
css=custom_css | |
) as gradio_app_blocks: | |
gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") | |
gr.Markdown("## Enter a problem description to see how relevant technologies are identified through various processing steps.") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
input_problem.render() | |
with gr.Column(scale=1): | |
gr.Markdown("Click to start the analysis:"), | |
process_button = gr.Button("Process Problem", elem_id="process_button") | |
gr.Markdown("---") | |
gr.Markdown("### Processing Steps & Results:") | |
with gr.Row(): | |
with gr.Column(): | |
output_prompt.render() | |
output_constraints.render() # Renders HTML | |
with gr.Column(): | |
output_selected_ids.render() # This remains a Textbox | |
output_best_combinations.render() # Renders HTML | |
output_final_technologies.render() # Renders HTML | |
process_button.click( | |
fn=process_input_gradio, | |
inputs=input_problem, | |
outputs=[ | |
output_prompt, | |
output_constraints, | |
output_best_combinations, | |
output_selected_ids, | |
output_final_technologies | |
] | |
) | |
gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio") |