Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -28,3 +28,264 @@ async def process(data: InputData):
|
|
28 |
async def process(constraints: InputConstraints):
|
29 |
result = process_input(constraints, global_tech, global_tech_embeddings)
|
30 |
return {"technologies": result}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
async def process(constraints: InputConstraints):
|
29 |
result = process_input(constraints, global_tech, global_tech_embeddings)
|
30 |
return {"technologies": result}
|
31 |
+
|
32 |
+
import gradio as gr
|
33 |
+
import pandas as pd
|
34 |
+
import numpy as np
|
35 |
+
import random
|
36 |
+
import json
|
37 |
+
|
38 |
+
# --- Dummy Implementations for src.services.utils and src.services.processor ---
|
39 |
+
# These functions simulate the behavior of your actual services for the Gradio interface.
|
40 |
+
|
41 |
+
def load_technologies():
|
42 |
+
"""
|
43 |
+
Dummy function to simulate loading technologies and their embeddings.
|
44 |
+
Returns a sample DataFrame and a dummy numpy array for embeddings.
|
45 |
+
"""
|
46 |
+
tech_data = {
|
47 |
+
'id': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
|
48 |
+
'name': [
|
49 |
+
'Machine Learning', 'Cloud Computing', 'Blockchain', 'Cybersecurity',
|
50 |
+
'Data Analytics', 'Artificial Intelligence', 'DevOps', 'Quantum Computing',
|
51 |
+
'Edge Computing', 'Robotics'
|
52 |
+
],
|
53 |
+
'description': [
|
54 |
+
'Algorithms for learning from data.', 'On-demand computing resources.',
|
55 |
+
'Decentralized ledger technology.', 'Protecting systems from threats.',
|
56 |
+
'Analyzing large datasets.', 'Simulating human intelligence.',
|
57 |
+
'Software development and operations.', 'Utilizing quantum mechanics.',
|
58 |
+
'Processing data near the source.', 'Automated machines.'
|
59 |
+
]
|
60 |
+
}
|
61 |
+
global_tech_df = pd.DataFrame(tech_data)
|
62 |
+
# Simulate embeddings as random vectors
|
63 |
+
global_tech_embeddings_array = np.random.rand(len(global_tech_df), 128)
|
64 |
+
return global_tech_df, global_tech_embeddings_array
|
65 |
+
|
66 |
+
def set_prompt(problem_description: str) -> str:
|
67 |
+
"""
|
68 |
+
Dummy function to simulate prompt generation.
|
69 |
+
"""
|
70 |
+
return f"Based on the problem: '{problem_description}', what are the key technical challenges and requirements?"
|
71 |
+
|
72 |
+
def retrieve_constraints(prompt: str) -> list[str]:
|
73 |
+
"""
|
74 |
+
Dummy function to simulate constraint retrieval.
|
75 |
+
Returns a few sample constraints based on the prompt.
|
76 |
+
"""
|
77 |
+
if "security" in prompt.lower() or "secure" in prompt.lower():
|
78 |
+
return ["high security", "data privacy", "authentication"]
|
79 |
+
elif "performance" in prompt.lower() or "speed" in prompt.lower():
|
80 |
+
return ["low latency", "high throughput", "scalability"]
|
81 |
+
elif "data" in prompt.lower() or "analyze" in prompt.lower():
|
82 |
+
return ["data integration", "real-time analytics", "data storage"]
|
83 |
+
return ["cost-efficiency", "ease of integration", "maintainability", "scalability"]
|
84 |
+
|
85 |
+
def stem(text_list: list[str], type_of_text: str) -> list[str]:
|
86 |
+
"""
|
87 |
+
Dummy function to simulate stemming.
|
88 |
+
Simplistically removes 'ing', 's', 'es' from words.
|
89 |
+
"""
|
90 |
+
stemmed_list = []
|
91 |
+
for text in text_list:
|
92 |
+
words = text.split()
|
93 |
+
stemmed_words = []
|
94 |
+
for word in words:
|
95 |
+
word = word.lower()
|
96 |
+
if word.endswith("ing"):
|
97 |
+
word = word[:-3]
|
98 |
+
elif word.endswith("es"):
|
99 |
+
word = word[:-2]
|
100 |
+
elif word.endswith("s"):
|
101 |
+
word = word[:-1]
|
102 |
+
stemmed_words.append(word)
|
103 |
+
stemmed_list.append(" ".join(stemmed_words))
|
104 |
+
return stemmed_list
|
105 |
+
|
106 |
+
def save_dataframe(df: pd.DataFrame, filename: str):
|
107 |
+
"""
|
108 |
+
Dummy function to simulate saving a DataFrame.
|
109 |
+
"""
|
110 |
+
print(f"Simulating saving DataFrame to {filename}")
|
111 |
+
# In a real scenario, you might save to Excel: df.to_excel(filename, index=False)
|
112 |
+
|
113 |
+
def save_to_pickle(data):
|
114 |
+
"""
|
115 |
+
Dummy function to simulate saving data to a pickle file.
|
116 |
+
"""
|
117 |
+
print(f"Simulating saving data to pickle: {type(data)}")
|
118 |
+
|
119 |
+
def get_contrastive_similarities(constraints_stemmed: list[str], global_tech_df: pd.DataFrame, global_tech_embeddings: np.ndarray):
|
120 |
+
"""
|
121 |
+
Dummy function to simulate getting contrastive similarities.
|
122 |
+
Returns a dummy similarity matrix and result similarities.
|
123 |
+
"""
|
124 |
+
num_constraints = len(constraints_stemmed)
|
125 |
+
num_tech = len(global_tech_df)
|
126 |
+
|
127 |
+
# Simulate a similarity matrix
|
128 |
+
# Each row corresponds to a constraint, each column to a technology
|
129 |
+
matrix = np.random.rand(num_constraints, num_tech)
|
130 |
+
matrix = np.round(matrix, 3) # Round for better display
|
131 |
+
|
132 |
+
# Simulate result_similarities (e.g., top 3 technologies for each constraint)
|
133 |
+
result_similarities = {}
|
134 |
+
for i, constraint in enumerate(constraints_stemmed):
|
135 |
+
# Get top 3 tech indices for this constraint
|
136 |
+
top_tech_indices = np.argsort(matrix[i])[::-1][:3]
|
137 |
+
top_tech_names = [global_tech_df.iloc[idx]['name'] for idx in top_tech_indices]
|
138 |
+
top_tech_scores = [matrix[i, idx] for idx in top_tech_indices]
|
139 |
+
result_similarities[constraint] = list(zip(top_tech_names, top_tech_scores))
|
140 |
+
|
141 |
+
return result_similarities, matrix
|
142 |
+
|
143 |
+
def find_best_list_combinations(constraints_stemmed: list[str], global_tech_df: pd.DataFrame, matrix: np.ndarray) -> list[dict]:
|
144 |
+
"""
|
145 |
+
Dummy function to simulate finding best list combinations.
|
146 |
+
Returns a few dummy combinations of technologies.
|
147 |
+
"""
|
148 |
+
best_combinations = []
|
149 |
+
# Simulate finding combinations that best cover constraints
|
150 |
+
for i in range(min(3, len(constraints_stemmed))): # Create up to 3 dummy combinations
|
151 |
+
combination = {
|
152 |
+
"technologies": [],
|
153 |
+
"score": round(random.uniform(0.7, 0.95), 2),
|
154 |
+
"covered_constraints": []
|
155 |
+
}
|
156 |
+
num_tech_in_combo = random.randint(2, 4)
|
157 |
+
selected_tech_ids = random.sample(global_tech_df['id'].tolist(), num_tech_in_combo)
|
158 |
+
for tech_id in selected_tech_ids:
|
159 |
+
tech_name = global_tech_df[global_tech_df['id'] == tech_id]['name'].iloc[0]
|
160 |
+
combination["technologies"].append({"id": tech_id, "name": tech_name})
|
161 |
+
|
162 |
+
# Assign some random constraints to be covered
|
163 |
+
num_covered_constraints = random.randint(1, len(constraints_stemmed))
|
164 |
+
combination["covered_constraints"] = random.sample(constraints_stemmed, num_covered_constraints)
|
165 |
+
|
166 |
+
best_combinations.append(combination)
|
167 |
+
return best_combinations
|
168 |
+
|
169 |
+
def select_technologies(best_combinations: list[dict]) -> list[int]:
|
170 |
+
"""
|
171 |
+
Dummy function to simulate selecting technologies based on best combinations.
|
172 |
+
Returns a list of unique technology IDs.
|
173 |
+
"""
|
174 |
+
selected_ids = set()
|
175 |
+
for combo in best_combinations:
|
176 |
+
for tech in combo["technologies"]:
|
177 |
+
selected_ids.add(tech["id"])
|
178 |
+
return list(selected_ids)
|
179 |
+
|
180 |
+
def get_technologies_by_id(tech_ids: list[int], global_tech_df: pd.DataFrame) -> list[dict]:
|
181 |
+
"""
|
182 |
+
Dummy function to simulate retrieving technology details by ID.
|
183 |
+
"""
|
184 |
+
selected_technologies = []
|
185 |
+
for tech_id in tech_ids:
|
186 |
+
tech_info = global_tech_df[global_tech_df['id'] == tech_id]
|
187 |
+
if not tech_info.empty:
|
188 |
+
selected_technologies.append(tech_info.iloc[0].to_dict())
|
189 |
+
return selected_technologies
|
190 |
+
|
191 |
+
# --- Core Logic (Modified for Gradio Interface) ---
|
192 |
+
|
193 |
+
# Load global technologies and embeddings once when the app starts
|
194 |
+
global_tech_df, global_tech_embeddings_array = load_technologies()
|
195 |
+
|
196 |
+
def process_input_gradio(problem_description: str):
|
197 |
+
"""
|
198 |
+
Processes the input problem description step-by-step for Gradio.
|
199 |
+
Returns all intermediate results.
|
200 |
+
"""
|
201 |
+
# Step 1: Set Prompt
|
202 |
+
prompt = set_prompt(problem_description)
|
203 |
+
|
204 |
+
# Step 2: Retrieve Constraints
|
205 |
+
constraints = retrieve_constraints(prompt)
|
206 |
+
|
207 |
+
# Step 3: Stem Constraints
|
208 |
+
constraints_stemmed = stem(constraints, "constraints")
|
209 |
+
save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx")
|
210 |
+
|
211 |
+
# Step 4: Global Tech (already loaded, just acknowledge)
|
212 |
+
# save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading
|
213 |
+
|
214 |
+
# Step 5: Get Contrastive Similarities
|
215 |
+
result_similarities, matrix = get_contrastive_similarities(
|
216 |
+
constraints_stemmed, global_tech_df, global_tech_embeddings_array
|
217 |
+
)
|
218 |
+
save_to_pickle(result_similarities)
|
219 |
+
|
220 |
+
# Step 6: Find Best List Combinations
|
221 |
+
best_combinations = find_best_list_combinations(constraints_stemmed, global_tech_df, matrix)
|
222 |
+
|
223 |
+
# Step 7: Select Technologies
|
224 |
+
best_technologies_id = select_technologies(best_combinations)
|
225 |
+
|
226 |
+
# Step 8: Get Technologies by ID
|
227 |
+
best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df)
|
228 |
+
|
229 |
+
# Format outputs for Gradio
|
230 |
+
# Convert numpy array to list of lists for better Gradio display
|
231 |
+
matrix_display = matrix.tolist()
|
232 |
+
|
233 |
+
# Convert result_similarities to a more readable format for Gradio
|
234 |
+
result_similarities_display = {
|
235 |
+
k: ", ".join([f"{name} ({score:.3f})" for name, score in v])
|
236 |
+
for k, v in result_similarities.items()
|
237 |
+
}
|
238 |
+
|
239 |
+
best_combinations_display = json.dumps(best_combinations, indent=2)
|
240 |
+
best_technologies_display = json.dumps(best_technologies, indent=2)
|
241 |
+
|
242 |
+
return (
|
243 |
+
prompt,
|
244 |
+
", ".join(constraints),
|
245 |
+
", ".join(constraints_stemmed),
|
246 |
+
"Global technologies loaded and ready.", # Acknowledge tech loading
|
247 |
+
str(result_similarities_display), # Convert dict to string for display
|
248 |
+
pd.DataFrame(matrix_display, index=constraints_stemmed, columns=global_tech_df['name']), # Display matrix as DataFrame
|
249 |
+
best_combinations_display,
|
250 |
+
", ".join(map(str, best_technologies_id)),
|
251 |
+
best_technologies_display
|
252 |
+
)
|
253 |
+
|
254 |
+
# --- Gradio Interface Setup ---
|
255 |
+
|
256 |
+
# Define the input and output components
|
257 |
+
input_problem = gr.Textbox(
|
258 |
+
label="Enter Problem Description",
|
259 |
+
placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics."
|
260 |
+
)
|
261 |
+
|
262 |
+
output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False)
|
263 |
+
output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False)
|
264 |
+
output_stemmed_constraints = gr.Textbox(label="3. Stemmed Constraints", interactive=False)
|
265 |
+
output_tech_loaded = gr.Textbox(label="4. Global Technologies Status", interactive=False)
|
266 |
+
output_similarities = gr.Textbox(label="5. Result Similarities (Constraint -> Top Technologies)", interactive=False)
|
267 |
+
output_matrix = gr.Dataframe(label="6. Similarity Matrix (Constraints vs. Technologies)", interactive=False)
|
268 |
+
output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found", interactive=False)
|
269 |
+
output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False)
|
270 |
+
output_final_technologies = gr.JSON(label="9. Final Best Technologies", interactive=False)
|
271 |
+
|
272 |
+
|
273 |
+
# Create the Gradio Interface
|
274 |
+
gr.Interface(
|
275 |
+
fn=process_input_gradio,
|
276 |
+
inputs=input_problem,
|
277 |
+
outputs=[
|
278 |
+
output_prompt,
|
279 |
+
output_constraints,
|
280 |
+
output_stemmed_constraints,
|
281 |
+
output_tech_loaded,
|
282 |
+
output_similarities,
|
283 |
+
output_matrix,
|
284 |
+
output_best_combinations,
|
285 |
+
output_selected_ids,
|
286 |
+
output_final_technologies
|
287 |
+
],
|
288 |
+
title="Insight Finder: Step-by-Step Technology Selection",
|
289 |
+
description="Enter a problem description to see how relevant technologies are identified through various processing steps.",
|
290 |
+
allow_flagging="never"
|
291 |
+
).launch()
|