from fastapi import FastAPI from pydantic import BaseModel from typing import Dict, List import gradio as gr import pandas as pd import json from src.core import * app = FastAPI( title="Insight Finder", description="Find relevant technologies from a problem", ) class InputData(BaseModel): problem: str class InputConstraints(BaseModel): constraints: Dict[str, str] # This schema defines the structure for a single technology object class Technology(BaseModel): """Represents a single technology entry with its details.""" title: str purpose: str key_components: str advantages: str limitations: str id: int class PriorArt(BaseModel): """Represents the search of prior art using the technology combinations""" content: str uris: List # This schema defines the root structure of the JSON class TechnologyData(BaseModel): """Represents the top-level object containing a list of technologies.""" technologies: List[Technology] @app.post("/process", response_model=TechnologyData) async def process(data: InputData): result, prior_art = process_input(data, global_tech, global_tech_embeddings, "problem") return {"technologies": result, "prior_art": prior_art} @app.post("/process-constraints", response_model=TechnologyData) async def process_constraints(constraints: InputConstraints): result, prior_art = process_input(constraints.constraints, global_tech, global_tech_embeddings, "constraints") return {"technologies": result, "prior_art": prior_art} @app.post("/prior-art-constraints", response_model=PriorArt) async def prior_art_search(technologies: TechnologyData, constraints: InputConstraints, type: str): prior_art = process_prior_art(technologies, constraints, type) return prior_art @app.post("/prior-art-problems", response_model=PriorArt) async def prior_art_search(technologies: TechnologyData, problems: InputData, type: str): prior_art = process_prior_art(technologies, problems, type) return prior_art def make_json_serializable(data): if isinstance(data, dict): return {k: make_json_serializable(v) for k, v in data.items()} elif isinstance(data, list): return [make_json_serializable(item) for item in data] elif isinstance(data, tuple): return tuple(make_json_serializable(item) for item in data) elif hasattr(data, 'item'): return float(data.item()) else: return data # --- Helper functions to format HTML outputs --- def format_constraints_html(constraints: dict) -> str: html_content = "
" for title, description in constraints.items(): html_content += f"""

{title}: {description}

""" html_content += "
" return "

Retrieved Constraints

" + html_content def format_best_combinations_html(combinations_data: list) -> str: html_content = "
" for i, combination in enumerate(combinations_data): problem_title = combination.get("problem", {}).get("title", f"Problem {i+1}") technologies = combination.get("technologies", []) html_content += f"""

{problem_title}

""" for tech_info_score in technologies: tech_info = tech_info_score[0] # The dictionary part if isinstance(tech_info, dict): html_content += f"""

{tech_info.get('title', 'N/A')}

Purpose: {tech_info.get('purpose', 'N/A')}

Components: {tech_info.get('key_components', 'N/A')}

Advantages: {tech_info.get('advantages', 'N/A')}

Limitations: {tech_info.get('limitations', 'N/A')}

""" html_content += """
""" html_content += "
" return "

The 5 Best Technology Combinations per constraint

" + html_content def format_final_technologies_html(technologies_list: list) -> str: html_content = "
" for tech_info in technologies_list: if isinstance(tech_info, dict): html_content += f"""

{tech_info.get('title', 'N/A')}

Purpose: {tech_info.get('purpose', 'N/A')}

Components: {tech_info.get('key_components', 'N/A')}

Advantages: {tech_info.get('advantages', 'N/A')}

Limitations: {tech_info.get('limitations', 'N/A')}

""" html_content += "
" return "

The best technologies combinations

" + html_content def process_input_gradio(problem_description: str): """ Processes the input problem description step-by-step for Gradio. Returns all intermediate results. """ # Step 1: Set Prompt prompt = set_prompt(problem_description) # Step 2: Retrieve Constraints constraints = retrieve_constraints(prompt) # Step 3: Stem Constraints constraints_stemmed = stem(constraints, "constraints") save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") print(constraints_stemmed) # Step 4: Global Tech (already loaded, just acknowledge) # save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading # Step 5: Get Contrastive Similarities result_similarities, matrix = get_contrastive_similarities( constraints_stemmed, global_tech, global_tech_embeddings ) save_to_pickle(result_similarities) # Step 6: Find Best List Combinations best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) # Step 7: Select Technologies best_technologies_id = select_technologies(best_combinations) # Step 8: Get Technologies by ID best_technologies = get_technologies_by_id(best_technologies_id, global_tech) print(constraints) print(best_combinations) print(best_technologies) # Format outputs for Gradio # For Constraints: constraints_html = format_constraints_html(constraints) # For Best Combinations: best_combinations_html = format_best_combinations_html(best_combinations) # For Final Technologies: final_technologies_html = format_final_technologies_html(best_technologies) return ( prompt, constraints_html, # Output HTML for constraints best_combinations_html, # Output HTML for best combinations ", ".join(map(str, best_technologies_id)), # Still a simple text list final_technologies_html # Output HTML for final technologies ) # --- Gradio Interface Setup --- input_problem = gr.Textbox( label="Enter Problem Description", placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." ) output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) output_constraints = gr.HTML(label="2. Retrieved Constraints") # Changed to HTML output_best_combinations = gr.HTML(label="7. Best Technology Combinations Found") # Changed to HTML output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) output_final_technologies = gr.HTML(label="9. Final Best Technologies") # Changed to HTML # Custom CSS for a professional look and specific output styling custom_css = """ /* General Body and Font Styling */ body { font-family: 'Segoe UI', 'Roboto', 'Helvetica Neue', Arial, sans-serif; color: #333; background-color: #f0f2f5; } /* Header Styling */ .gradio-container h1 { color: #0056b3; /* A deep blue for the main title */ text-align: center; margin-bottom: 10px; font-weight: 600; font-size: 2.5em; text-shadow: 1px 1px 2px rgba(0,0,0,0.1); } .gradio-container h2 { color: #007bff; /* A slightly lighter blue for subtitles */ text-align: center; margin-top: 0; margin-bottom: 30px; font-weight: 400; font-size: 1.2em; } /* Card-like styling for individual components */ .gradio-container .gr-box { background-color: #ffffff; border-radius: 12px; box-shadow: 0 4px 12px rgba(0, 0, 0, 0.08); padding: 20px; margin-bottom: 20px; border: 1px solid #e0e0e0; } /* Input Textbox Styling */ .gradio-container input[type="text"], .gradio-container textarea { border: 1px solid #ced4da; border-radius: 8px; padding: 12px 15px; font-size: 1em; color: #495057; transition: border-color 0.2s ease-in-out, box-shadow 0.2s ease-in-out; } .gradio-container input[type="text"]:focus, .gradio-container textarea:focus { border-color: #007bff; box-shadow: 0 0 0 0.2rem rgba(0, 123, 255, 0.25); outline: none; } /* Button Styling */ .gradio-container button { background-color: #28a745; /* A vibrant green for action */ color: white; border: none; border-radius: 8px; padding: 12px 25px; font-size: 1.1em; font-weight: 500; cursor: pointer; transition: background-color 0.2s ease-in-out, transform 0.1s ease-in-out; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .gradio-container button:hover { background-color: #218838; /* Darker green on hover */ transform: translateY(-2px); } .gradio-container button:active { transform: translateY(0); } /* Labels for outputs */ .gradio-container label { font-weight: 600; color: #495057; margin-bottom: 8px; display: block; /* Ensure labels are on their own line */ font-size: 1.1em; } /* --- Specific Styling for Outputs --- */ /* 2. Retrieved Constraints Styling */ .constraints-container { padding: 15px; background-color: #f8f9fa; border-radius: 8px; border: 1px solid #e9ecef; font-family: 'Georgia', serif; /* Different font */ line-height: 1.6; max-height: 300px; overflow-y: auto; } .constraint-item { margin-bottom: 10px; padding-bottom: 10px; border-bottom: 1px dashed #e0e0e0; } .constraint-item:last-child { border-bottom: none; margin-bottom: 0; padding-bottom: 0; } .constraint-title { font-weight: bold; color: #004085; /* Darker blue for constraint titles */ font-size: 1.1em; } .constraint-description { color: #333; font-size: 1em; } /* 7. Best Technology Combinations Found & 9. Final Best Technologies Styling */ .combinations-outer-container, .final-tech-container { padding: 15px; background-color: #f8f9fa; border-radius: 8px; border: 1px solid #e9ecef; max-height: 500px; /* Adjust as needed */ overflow-y: auto; font-family: 'Trebuchet MS', 'Lucida Grande', 'Lucida Sans Unicode', 'Lucida Sans', Tahoma, sans-serif; /* Different font */ } .problem-card { background-color: #ffffff; border: 1px solid #cfe2ff; /* Light blue border for problem card */ border-radius: 10px; padding: 20px; margin-bottom: 20px; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.05); } .problem-card-title { color: #0056b3; /* Deep blue for problem title */ font-size: 1.4em; margin-top: 0; margin-bottom: 15px; border-bottom: 2px solid #cfe2ff; padding-bottom: 10px; } .technologies-inner-container { display: grid; grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); /* Responsive grid for technologies */ gap: 15px; } .technology-card, .final-tech-card { background-color: #f0faff; /* Very light blue for technology cards */ border: 1px solid #b0d9ff; /* Slightly darker blue border */ border-radius: 8px; padding: 15px; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05); transition: transform 0.2s ease-in-out; } .technology-card:hover, .final-tech-card:hover { transform: translateY(-3px); } .tech-card-title, .final-tech-title { color: #007bff; /* Gradio's primary blue */ font-size: 1.2em; margin-top: 0; margin-bottom: 10px; font-weight: 600; } .technology-card p, .final-tech-card p { font-size: 0.95em; line-height: 1.5; margin-bottom: 5px; color: #555; } .technology-card p strong, .final-tech-card p strong { color: #004085; /* Darker blue for bold labels */ } /* Responsive adjustments */ @media (max-width: 768px) { .gradio-container { padding: 15px; } .gradio-container h1 { font-size: 2em; } .gradio-container button { width: 100%; padding: 15px; } .technologies-inner-container { grid-template-columns: 1fr; /* Stack columns on smaller screens */ } } """ # Create the Gradio Blocks demo with custom theme and CSS with gr.Blocks( theme=gr.themes.Soft(), css=custom_css ) as gradio_app_blocks: gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") gr.Markdown("## Enter a problem description to see how relevant technologies are identified through various processing steps.") with gr.Row(): with gr.Column(scale=2): input_problem.render() with gr.Column(scale=1): gr.Markdown("Click to start the analysis:"), process_button = gr.Button("Process Problem", elem_id="process_button") gr.Markdown("---") gr.Markdown("### Processing Steps & Results:") with gr.Row(): with gr.Column(): output_prompt.render() output_constraints.render() # Renders HTML with gr.Column(): output_selected_ids.render() # This remains a Textbox output_best_combinations.render() # Renders HTML output_final_technologies.render() # Renders HTML process_button.click( fn=process_input_gradio, inputs=input_problem, outputs=[ output_prompt, output_constraints, output_best_combinations, output_selected_ids, output_final_technologies ] ) gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio")