from fastapi import FastAPI from pydantic import BaseModel from typing import Dict, List import gradio as gr import pandas as pd import json from src.core import * app = FastAPI( title="Insight Finder", description="Find relevant technologies from a problem", ) class InputData(BaseModel): problem: str class InputConstraints(BaseModel): constraints: Dict[str, str] # This schema defines the structure for a single technology object class Technology(BaseModel): """Represents a single technology entry with its details.""" title: str purpose: str key_components: str advantages: str limitations: str id: int # This schema defines the root structure of the JSON class TechnologyData(BaseModel): """Represents the top-level object containing a list of technologies.""" technologies: List[Technology] @app.post("/process", response_model=TechnologyData) async def process(data: InputData): result = process_input(data, global_tech, global_tech_embeddings) return {"technologies": result} @app.post("/process-constraints", response_model=TechnologyData) async def process_constraints(constraints: InputConstraints): result = process_input_from_constraints(constraints.constraints, global_tech, global_tech_embeddings) return {"technologies": result} def make_json_serializable(data): """ Recursively convert tensors to floats in a data structure so it can be passed to json.dumps. """ if isinstance(data, dict): return {k: make_json_serializable(v) for k, v in data.items()} elif isinstance(data, list): return [make_json_serializable(item) for item in data] elif isinstance(data, tuple): return tuple(make_json_serializable(item) for item in data) elif hasattr(data, 'item'): # torch.Tensor with single value return float(data.item()) else: return data def process_input_gradio(problem_description: str): """ Processes the input problem description step-by-step for Gradio. Returns all intermediate results. """ # Step 1: Set Prompt prompt = set_prompt(problem_description) # Step 2: Retrieve Constraints constraints = retrieve_constraints(prompt) # Step 3: Stem Constraints constraints_stemmed = stem(constraints, "constraints") save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") print(constraints_stemmed) # Step 4: Global Tech (already loaded, just acknowledge) # save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading # Step 5: Get Contrastive Similarities result_similarities, matrix = get_contrastive_similarities( constraints_stemmed, global_tech, global_tech_embeddings ) save_to_pickle(result_similarities) # Step 6: Find Best List Combinations best_combinations = find_best_list_combinations(constraints_stemmed, global_tech, matrix) # Step 7: Select Technologies best_technologies_id = select_technologies(best_combinations) # Step 8: Get Technologies by ID best_technologies = get_technologies_by_id(best_technologies_id, global_tech) # Format outputs for Gradio matrix_display = matrix #.tolist() # Convert numpy array to list of lists for better Gradio display result_similarities_display = { item['id2']: f"{item['constraint']['title']} ({item['similarity'].item():.3f})" for item in result_similarities } # Convert to JSON-safe format safe_best_combinations = make_json_serializable(best_combinations) safe_best_technologies = make_json_serializable(best_technologies) # Now this will work safely: best_combinations_display = json.dumps(safe_best_combinations, indent=2) best_technologies_display = json.dumps(safe_best_technologies, indent=2) return ( prompt, "\n ".join(constraints), best_combinations_display, ", ".join(map(str, best_technologies_id)), best_technologies_display ) # --- Gradio Interface Setup --- # Define the input and output components input_problem = gr.Textbox( label="Enter Problem Description", placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." ) output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False) output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found") output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) output_final_technologies = gr.JSON(label="9. Final Best Technologies") # Create the Gradio Blocks demo with gr.Blocks() as gradio_app_blocks: gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") gr.Markdown("Enter a problem description to see how relevant technologies are identified through various processing steps.") input_problem.render() process_button = gr.Button("Process Problem") with gr.Column(): output_prompt.render() output_constraints.render() output_best_combinations.render() output_selected_ids.render() output_final_technologies.render() process_button.click( fn=process_input_gradio, inputs=input_problem, outputs=[ output_prompt, output_constraints, output_best_combinations, output_selected_ids, output_final_technologies ] ) gr.mount_gradio_app(app, gradio_app_blocks, path="/gradio")