from fastapi import FastAPI from pydantic import BaseModel from typing import Dict import gradio as gr import pandas as pd import json from src.core import * app = FastAPI( title="Insight Finder", description="Find relevant technologies from a problem", ) class InputData(BaseModel): problem: str class InputConstraints(BaseModel): constraints: Dict[str, str] class OutputData(BaseModel): technologies: list @app.post("/process", response_model=OutputData) async def process(data: InputData): result = process_input(data, global_tech, global_tech_embeddings) return {"technologies": result} @app.post("/process-constraints", response_model=OutputData) async def process_constraints(constraints: InputConstraints): result = process_input_from_constraints(constraints, global_tech, global_tech_embeddings) return {"technologies": result} def process_input_gradio(problem_description: str): """ Processes the input problem description step-by-step for Gradio. Returns all intermediate results. """ # Step 1: Set Prompt prompt = set_prompt(problem_description) # Step 2: Retrieve Constraints constraints = retrieve_constraints(prompt) # Step 3: Stem Constraints constraints_stemmed = stem(constraints, "constraints") save_dataframe(pd.DataFrame({"stemmed_constraints": constraints_stemmed}), "constraints_stemmed.xlsx") # Step 4: Global Tech (already loaded, just acknowledge) # save_dataframe(global_tech_df, "global_tech.xlsx") # This is already done implicitly by loading # Step 5: Get Contrastive Similarities result_similarities, matrix = get_contrastive_similarities( constraints_stemmed, global_tech_df, global_tech_embeddings_array ) save_to_pickle(result_similarities) # Step 6: Find Best List Combinations best_combinations = find_best_list_combinations(constraints_stemmed, global_tech_df, matrix) # Step 7: Select Technologies best_technologies_id = select_technologies(best_combinations) # Step 8: Get Technologies by ID best_technologies = get_technologies_by_id(best_technologies_id, global_tech_df) # Format outputs for Gradio matrix_display = matrix.tolist() # Convert numpy array to list of lists for better Gradio display result_similarities_display = { k: ", ".join([f"{name} ({score:.3f})" for name, score in v]) for k, v in result_similarities.items() } best_combinations_display = json.dumps(best_combinations, indent=2) best_technologies_display = json.dumps(best_technologies, indent=2) return ( prompt, ", ".join(constraints), ", ".join(constraints_stemmed), "Global technologies loaded and ready.", # Acknowledge tech loading str(result_similarities_display), # Convert dict to string for display pd.DataFrame(matrix_display, index=constraints_stemmed, columns=global_tech_df['name']), # Display matrix as DataFrame best_combinations_display, ", ".join(map(str, best_technologies_id)), best_technologies_display ) # --- Gradio Interface Setup --- # Define the input and output components input_problem = gr.Textbox( label="Enter Problem Description", placeholder="e.g., Develop a secure and scalable e-commerce platform with real-time analytics." ) output_prompt = gr.Textbox(label="1. Generated Prompt", interactive=False) output_constraints = gr.Textbox(label="2. Retrieved Constraints", interactive=False) output_stemmed_constraints = gr.Textbox(label="3. Stemmed Constraints", interactive=False) output_tech_loaded = gr.Textbox(label="4. Global Technologies Status", interactive=False) output_similarities = gr.Textbox(label="5. Result Similarities (Constraint -> Top Technologies)", interactive=False) output_matrix = gr.Dataframe(label="6. Similarity Matrix (Constraints vs. Technologies)", interactive=False) output_best_combinations = gr.JSON(label="7. Best Technology Combinations Found") output_selected_ids = gr.Textbox(label="8. Selected Technology IDs", interactive=False) output_final_technologies = gr.JSON(label="9. Final Best Technologies") # Create the Gradio Blocks demo with gr.Blocks() as gradio_app_blocks: gr.Markdown("# Insight Finder: Step-by-Step Technology Selection") gr.Markdown("Enter a problem description to see how relevant technologies are identified through various processing steps.") input_problem.render() process_button = gr.Button("Process Problem") with gr.Column(): output_prompt.render() output_constraints.render() output_stemmed_constraints.render() output_tech_loaded.render() output_similarities.render() output_matrix.render() output_best_combinations.render() output_selected_ids.render() output_final_technologies.render() process_button.click( fn=process_input_gradio, inputs=input_problem, outputs=[ output_prompt, output_constraints, output_stemmed_constraints, output_tech_loaded, output_similarities, output_matrix, output_best_combinations, output_selected_ids, output_final_technologies ] )